当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在平面直角坐标系中,直线y=kx+5与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(1,7),点D的横坐标为5.(...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,直线y=kx+5与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(1,7),点D的横坐标为5.
(1)求直线与抛物线的解析式;
(2)将此抛物线沿对称轴向下平移几个单位,抛物线与直线AB只有一个交点?
答案
(1)把点C的坐标(1,7)代入y=kx+5得,7=k+5,
解得k=2,
∴y=2x+5,
把x=5代入y=2x+5,得y=15,
∴D(5,15).
把C(1,7)、D(5,15)代入y=ax2+bx,得a=-1,b=8,
∴y=-x2+8x;

(2)抛物线y=-x2+8x的顶点坐标为(4,16),对称轴是直线x=4,
设向下平移后的抛物线的顶点坐标为(4,k),
所以,平移后的抛物线的解析式为y=-(x-4)2+k,
与直线y=2x+5联立消掉y得,-(x-4)2+k=2x+5,
整理得,x2-6x+21-k=0,
∵抛物线与直线AB只有一个交点,
∴△=b2-4ac=36-4(21-k)=0,
解得k=12,
16-12=4,
所以,此抛物线沿着对称轴向下平移4个单位.
核心考点
试题【如图,在平面直角坐标系中,直线y=kx+5与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(1,7),点D的横坐标为5.(】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+b1与两坐标轴分别交于A、D两点,与抛物线交于B(1,3)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),求△PON的面积最大值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△POD面积的
1
9
?若存在,请求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知抛物线经过点B(-2,3),原点O和x轴上另一点A,它的对称轴与x轴交于点C(2,0).
(1)求此抛物线的函数关系式;
(2)连接CB,在抛物线的对称轴上找一点E,使得CB=CE,求点E的坐标;
(3)在(2)的条件下,连接BE,设BE的中点为G,在抛物线的对称轴上是否存在点P,使得△PBG的周长最小?若存在,求出P点坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图1,抛物线y=-
1
4
x2+
1
4
x+3
与直线y=-
1
4
x-
3
4
交于A、B两点.如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标,则点P(m,n)落在如图1中的抛物线与直线围成区域内(图中阴影部分,含边界)的概率是______.
题型:不详难度:| 查看答案
有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.
(1)在如图所示的直角坐标系中,求出该抛物线的解析式;
(2)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.