当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,抛物线y=-12x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C,对称轴为直线x=12,OA=2,OD平分∠BOC交抛物线于点D(点D...
题目
题型:不详难度:来源:
如图,抛物线y=-
1
2
x2+bx+c
与x轴交于A、B两点(A点在B点左侧),与y轴交于点C,对称轴为直线x=
1
2
,OA=2
,OD平分∠BOC交抛物线于点D(点D在第一象限).
(1)求抛物线的解析式和点D的坐标;
(2)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)点M是抛物线上的动点,在x轴上是否存在点N,使A、D、M、N四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的M点坐标;如果不存在,请说明理由.
答案
(1)∵OA=2
∴A(-2,0)
∵A与B关于直线x=
1
2
对称
∴B(3,0),
由于A、B,两点在抛物线上,





-2-2b+c=0
-
9
2
+3b+C=0

解得





b=
1
2
c=3

y=-
1
2
x2+
1
2
x+3

过D作DE⊥x轴于E
∵∠BOC=90°,OD平分∠BOC
∴∠DOB=45°,∠ODE=45°,
∴DE=OE
即xD=yD
x=-
1
2
x2+
1
2
x+3

解得x1=2,x2=-3(舍去)
∴D(2,2);(4分)

(2)存在
∵BD为定值,
∴要使△BPD的周长最小,只需PD+PB最小
∵A与B关于直线x=
1
2
对称,
∴PB=PA,只需PD+PA最小
∴连接AD,交对称轴于点P,此时PD+PA最小,(2分)
由A(-2,0),D(2,2)可得
直线AD:y=
1
2
x+1
(1分)
x=
1
2
y=
5
4

∴存在点P(
1
2
5
4
)
,使△BPD的周长最小(1分)

(3)存在.
(i)当AD为平行四边形AMDN的对角线时,MDAN,即MDx轴
∴yM=yD
∴M与D关于直线x=
1
2
对称,
∴M(-1,2)(1分)
(ii)当AD为平行四边形ADNM的边时,
∵平行四边形ADNM是中心对称图形,△AND≌△ANM
∴|yM|=|yD|,
即yM=-yD=-2,
∴令-
1
2
x2+
1
2
x+3=-2
,即x2-x-10=0;
解得x1,2=


41
2
M(
1+


41
2
,-2)
M(
1-


41
2
,-2)
,(2分)
综上所述:满足条件的M点有三个M(-1,2),M(
1+


41
2
,-2)
M(
1-


41
2
,-2).(1分)
核心考点
试题【如图,抛物线y=-12x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C,对称轴为直线x=12,OA=2,OD平分∠BOC交抛物线于点D(点D】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.
题型:不详难度:| 查看答案
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+2.6.已知球网与O点的水平距离为9m,高度为2.43m.
(1)求y与x的关系式;(不要求写出自变量x的取值范围)
(2)球能否越过球网?球会不会出界?请说明理由.
题型:不详难度:| 查看答案
已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线y=ax2+bx+c(a≠0)经过点A、B、C.
(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上的一点,当锐角∠PDO的正切值是
1
2
时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等与四边形APCE的面积时,求点E的坐标.
题型:不详难度:| 查看答案
如图,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于C点.
(1)直接写出抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小.请在图中画出点P的位置,并求点P的坐标.
题型:不详难度:| 查看答案
在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度
32
3
米.如图a:以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米.问:

(1)通过计算说明,球是否会进球门?
(2)如果守门员站在距离球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图b:在另一次地面进攻中,假如守门员站在离球门中央2米远的A点处防守,进攻队员在离球门中央12米的B处以120千米/小时的球速起脚射门,射向球门的立柱C.球门的宽度CD为7.2米,而守门员防守的最远水平距离S和时间t之间的函数关系式为S=10t,问这次射门守门员能否挡住球?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.