当前位置:初中试题 > 数学试题 > 二次函数定义 > (12分)在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点.(1)求此抛物线的解析式;(2)以OA的中点M为圆心,OM长为半径作⊙M,在...
题目
题型:不详难度:来源:
(12分)
在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点.

(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)
答案

(1)
(2)存在 这样的点P共有4个:
解析
解:(1)设抛物线的解析式为:
由题意得:                           ……………1分
解得:                       ……………2分
∴抛物线的解析式为:                  ……………3分
(2)存在                                             ………………4分

抛物线的顶点坐标是,作抛物线和⊙M(如图),
设满足条件的切线 l 与 x 轴交于点B,与⊙M相切于点C
连接MC,过C作CD⊥x 轴于D
∵MC =" OM" =" 2,"  ∠CBM =" 30°, " CM⊥BC
∴∠BCM =" 90°" ,∠BMC =" 60°" ,BM =" 2CM" =" 4" ,  ∴B (-2, 0)                  
在Rt△CDM中,∠DCM = ∠CDM - ∠CMD = 30°
∴DM =" 1,  " CD = =        ∴   C (1, )
设切线 l 的解析式为:,点B、C在 l 上,可得:
        解得: 
∴切线BC的解析式为:
∵点P为抛物线与切线的交点
        解得:        
∴点P的坐标为:,                    …………8分
∵ 抛物线的对称轴是直线
此抛物线、⊙M都与直线成轴对称图形
于是作切线 l 关于直线的对称直线 l′(如图)
得到B、C关于直线的对称点B1、C1
l′满足题中要求,由对称性,得到P1、P2关于直线的对称点:
 ,即为所求的点.
∴这样的点P共有4个: ……12分
(本题其它解法参照此标准给分)
核心考点
试题【(12分)在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点.(1)求此抛物线的解析式;(2)以OA的中点M为圆心,OM长为半径作⊙M,在】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
(12分)如图,在平面直角坐标系中,抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.

(1)求的值;
(2)判断的形状,并说明理由;
(3)在线段上是否存在点,使相似.若存在,求出点的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
(15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.
题型:不详难度:| 查看答案
(10分) 恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
题型:不详难度:| 查看答案
抛物线的顶点坐标是( )
A.(0,-1)B.(-1,1)C.(-1,0)D.(1,0)

题型:不详难度:| 查看答案
如图,直线y=hx+d与x轴和y轴分别相交于点A(-1,0),B(0,1),与双曲线y=在第一象限相交于点C;以AC为斜边、为内角的直角三角形,与以CO为对角线、一边在x轴上的矩形面积相等;点C,P在以B为顶点的抛物线y=上;直线y=hx+d、双曲线y=和抛物线同时经过两个不同的点C,D

(1)确定t的值
(2)确定m , n , k的值
(3)若无论a , b , c何值,抛物线都不经点P,请确定P坐标(12分)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.