当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到...
题目
题型:不详难度:来源:
如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C1DE的位置.

(1)求C1点的坐标;
(2)求经过三点O、A、C1的抛物线的解析式;
(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF
的解析式;
(4)抛物线上是否存在一点M,使得.若存在,请求出点M的坐标;
若不存在,请说明理由.
答案

(1)C1(3,)
(2)a=,b=-
(3)y=x+
(4)M1(4,),M2(-2,),理由略
解析
(1)C1(3,)
(2)∵抛物线过原点O(0,0),设抛物线解析式为y=ax2+bx
把A(2,0),C`(3,)带入,得 
解得a=,b=-
∴抛物线解析式为y=x2-x
(3)∵∠ABF=90°,∠BAF=60°,∴∠AFB=30°
又AB=2   ∴AF=4   ∴OF=2      ∴F(-2,0)
设直线BF的解析式为y=kx+b
把B(1,),F(-2,0)带入,得   解得k=,b=
∴直线BF的解析式为y=x+
(4)①当M在x轴上方时,存在M(x,x2-x)
S△AMF:S△OAB=[×4×(x2-x)]:[×2×4]=16:3
得x2-2x-8=0,解得x1=4,x2=-2
当x1=4时,y=×42-×4=
当x1=-2时,y=×(-2)2-×(-2)=
∴M1(4,),M2(-2,)
②当M在x轴下方时,不存在,设点M(x,x2-x)
S△AMF:S△OAB=[-×4×(x2-x)]:[×2×4]=16:3
得x2-2x+8=0,b2-4ac<0 无解
综上所述,存在点的坐标为M1(4,),M2(-2,)
核心考点
试题【如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
二次函数的图像如图所示,当函数值时,x的取值范围为


B.
C.x≤x≥3
D.≤x≤3
题型:不详难度:| 查看答案
把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则( ▲ ).
A.12   B.9C.  D.10

题型:不详难度:| 查看答案
已知二次函数的图象如图,则下列5个代数式:①ac,②,③,④,⑤,⑥中,其值大于0的序号为 ▲ 
题型:不详难度:| 查看答案
(本小题10分)
抛物线经过点O(0,0),A(4,0),B(2,2).
(1)求该抛物线的解析式;
(2)画出此抛物线的草图;
(3)求证:△AOB是等腰直角三角形;
(4)将△AOB绕点O按顺时针方向旋转135°得△,写出边的中点P的   坐标,试判定点P是否在此抛物线上,并说明理由.
题型:不详难度:| 查看答案
(本小题满分14分)
已知:如图,抛物线与y轴交于点C(0,), 与x轴交于点A、 B,点A的坐标为(2,0).

(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(,0).问:是否存在这样的直线,使得△OMF是等腰三角形?若存  在,请求出点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.