当前位置:初中试题 > 数学试题 > 二次函数定义 > (本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A在y轴上,点C在x轴上,且,OB=OC.(1)求点B的坐标;(...
题目
题型:不详难度:来源:
(本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A在y轴上,点C在x轴上,且,OB=OC.
(1)求点B的坐标;
(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,过点P作PM∥CB交线段AB于点M,过点M作MR⊥OC,垂足为R,线段MR分别交直线PH、OB于点E、G,点F为线段PM的中点,联结EF.
①判断EF与PM的位置关系;
②当t为何值时,
答案
解:(1)如图1,过点B作BN⊥OC,垂足为N



,OB=OC
∴OA=8,OC="10     " -------------------------------1分
∴OB="OC=10," BN=OA=8
 
∴B(6,8)          ----------------------------------------------2分
(2)如图1,∵∠BON=∠POH, ∠ONB=∠OHP=90°. 
∴△BON∽△POH   ∴
∵PC="5t.  " ∴OP="10-5t.   " ∴OH="6-3t." PH=8-4t.
∴BH="OB-OH=10-(6-3t)=3t+4   "
 ------------------------------------ 3分
∴t的取值范围是:0≤t<2       ------------------------------------------4分
(3)①EF⊥PM                          ----------------------------------------------------5分
∵MR⊥OC,PH⊥OB
∴∠RPM+∠RMP=90°,∠HPD+∠HDP=90° 
∵OC="OB     " ∴∠OCB=∠OBC.
∵BC∥PM
∴∠RPM=∠HDP,∴∠RMP=∠HPD,即:∠ EMP=∠HPM
∴EM=EP
∵点F为PM的中点   ∴EF⊥PM       ----------6分
②如图2过点B作BN′⊥OC,垂足为 N′,BN′=8,CN′=4
∵BC∥PM,MR⊥OC
∴△MRP≌△B N′C
∴PR="C" N′=4
设EM=x,则EP=x
在△PER中,∠ERP=90°,RE=MR-ME=8-x
,∴x=5
∴ME=5
∵△MGB∽△N′BO     

∵ PM∥CB,AB∥OC
∴四边形BMPC是平行四边形. ∴ BM=PC=5t.
第一种情况:当点G在点E上方时(如图2)
∵EG=2,∴MG=EM-EG=5-2=3
 ∴t=                                 --------------------7分
第二种情况:当点G在点E下方时(如图3) MG=ME+EG=5+2=7,
 ,∴t=         -------------------------------------------8分
∴当t=时,.      
解析

核心考点
试题【(本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A在y轴上,点C在x轴上,且,OB=OC.(1)求点B的坐标;(】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
(本题满分12分)在平面直角坐标系中,已知二次函数的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3).
(1)求此二次函数的表达式;
(2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°. 若存在,求出点P的坐标;若不存在,请说明理由;
(3)点K抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由
题型:不详难度:| 查看答案
如图1,在平面直角坐标系中,等腰直角三角形OMN的斜边ONx轴上,顶点M的坐标为(3,3),MH为斜边上的高.抛物线C与直线N点垂直于x轴的直线交于点D.点P(m,0)是x轴上一动点,过点Py轴的平行线,交射线OM与点E.设以MEHN为顶点的四边形的面积为S
(1)直接写出点D的坐标及n的值;
(2)判断抛物线C的顶点是否在直线OM上?并说明理由;
(3)当m≠3时,求Sm的函数关系式;
(4)如图2,设直线PE交射线ODR,交抛物线C于点Q
RQ为一边,在RQ的右侧作矩形RQFG,其中RG=
直接写出矩形RQFG与等腰直角三角形OMN重叠部分为
轴对称图形时m的取值范围.
题型:不详难度:| 查看答案
我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(万元)
⑴若不进行开发,求5年所获利润的最大值是多少?
⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
⑶根据⑴、⑵,该方案是否具有实施价值?
题型:不详难度:| 查看答案
如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0).
⑴求b的值.
⑵求x1•x2的值
⑶分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.
⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.
题型:不详难度:| 查看答案
如图(十一)所示,在平面直角坐标系Oxy中,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C.
(1)求∠ACB的度数;
(2)已知抛物线y=ax2+bx+3经过A、B两点,求抛物线的解析式;
(3)线段BC上是否存在点D,使△BOD为等腰三角形.若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.