当前位置:初中试题 > 数学试题 > 二次函数定义 > (11分)如图,抛物线经过的三个点,已知轴,点在轴上,点在轴上,且.(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称...
题目
题型:不详难度:来源:
(11分)如图,抛物线经过的三个点,已知轴,点轴上,点轴上,且
(1)求抛物线的对称轴;
(2)写出三点的坐标并求抛物线的解析式;
(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形?若存在,请在图中画出所有符合条件的P点,然后直接写出点的坐标;若不存在,请说明理由.
答案
解:(1)抛物线的对称轴………2分
(2)      …………5分
把点标代入中,解得…6分
……………………………7分
(3)如图所示,存在符合条件的点共有3个.……8分

………………9分
………………10分
…………11分
求P点的详细过程:
以下分三类情形探索.
设抛物线对称轴与轴交于,与交于

过点轴于,易得
为腰且顶角为角有1个:
    8分
中,
    9分
②以为腰且顶角为角有1个:
中,   10分
  11分
③以为底,顶角为角有1个,即
的垂直平分线交抛物线对称轴于,此时平分线必过等腰的顶点
过点垂直轴,垂足为,显然
.P3K=2.5, 于是………………13分
…………14分注:第(3)小题中,只写出点的坐标,无任何说明者不得分.
解析

核心考点
试题【(11分)如图,抛物线经过的三个点,已知轴,点在轴上,点在轴上,且.(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
(本题12分)阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高”(h).我们可行出生种计算三角形面积的新方示:,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)求△ABC的铅垂高CD及SABC
(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使
若存在,求出P点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
(11分)如图1,已知抛物线经过原点0和x轴上另一个点E,顶点M的坐标是(2,4); 矩形ABCD的顶点A与点0重合,AD、AB分别在x轴和y轴上,且AD="2" ,AB=3.
(1)求该抛物线所参应的函数表达式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2).
①当t=时,判断点P时否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的图形面积为S,试部S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
抛物线向左平移2个单位,向上平移1个单位后的抛物线的解析式是  
 
题型:不详难度:| 查看答案
(本题满分12分,第(1)小题4分,第(2)小题4分、第(3)小题4分)
如图8,在平面直角坐标系xOy中,半径为与x轴交于两点,且点C在x轴的上方.

(1)求圆心C的坐标;
(2)已知一个二次函数的图像经过点、B、C,求这二次函数的解析式;
(3)设点P在y轴上,点M在(2)的二次函数图像上,如果以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.
题型:不详难度:| 查看答案
(2011•潼南县)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.