当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在等腰梯形ABCD中,ABDC,AB=3,DC=,高CE=2,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速...
题目
题型:不详难度:来源:
如图,在等腰梯形ABCD中,ABDC,AB=3,DC=,高CE=2,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为S1、被直线RQ扫过的图形面积为S2,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.
(1)填空:∠AHB=   ;AC=   
(2)若S2=3S1,求x;
(3)设S2=mS1,求m的变化范围.
答案
解:(1)90°;4。
(2)直线移动有两种情况:0<x<≤x≤2。

①当0<x<时,∵MN∥BD,∴△AMN∽△ARQ。
∵直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,
∴△AMN和△ARQ的相似比为1:2。
。∴S2=4S1,与题设S2=3S1矛盾。
∴当0<x<时,不存在x使S2=3S1
②当≤x≤2时,
 ∵AB∥CD,∴△ABH∽△CDH。
∴CH:AH=CD:AB=DH:BH=1:3。
∴CH=DH=AC=1,AH═BH=4﹣1=3。
∵CG=4﹣2x,AC⊥BD,∴SBCD=×4×1=2
∵RQ∥BD,∴△CRQ∽△CDB。


∵MN∥BD,∴△AMN∽△ADB。∴
∴S1=x2,S2=8﹣8(2﹣x)2
∵S2=3S1,∴8﹣8(2﹣x)2=3·x2,解得:x1=(舍去),x2=2。
∴x的值为2。
(3)由(2)得:当0<x<时,m=4,
≤x≤2时,∵S2=mS1

∴m是的二次函数,当≤x≤2时,即当时,m随的增大而增大,
∴当x=时,m最大,最大值为4;当x=2时,m最小,最小值为3。
∴m的变化范围为:3≤m≤4。
解析
相似三角形的判定和性质,平移的性质,二次函数的最值,等腰梯形的性质。
【分析】(1)过点C作CK∥BD交AB的延长线于K,

∵CD∥AB,∴四边形DBKC是平行四边形。
∴BK=CD=,CK=BD。
∴AK=AB+BK=
∵四边形ABCD是等腰梯形,∴BD=AC。
∴AC=CK。∴AE=EK=AK=2=CE。
∵CE是高,∴∠K=∠KCE=∠ACE=∠CAE=45°。∴∠ACK=90°。∴∠AHB=∠ACK=90°
∴AC=AK•cos45°=
(2)直线移动有两种情况:0<x<≤x≤2;然后分别从这两种情况分析求解:当
0<x<时,易得S2=4S1≠3S1;当 ≤x≤2时,根据相似三角形的性质与直角三角形的面积的求解方法,可求得△BCD与△CRQ的面积,继而可求得S2与S1的值,由S2=3S1,即可求得x的值;
(3)由(2)可得当0<x< 时,m=4;当≤x≤2时,可得,化为关于的二次函数,利用二次函数的性质求得m的变化范围。
核心考点
试题【如图,在等腰梯形ABCD中,ABDC,AB=3,DC=,高CE=2,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
二次函数的最小值是    ▲   
题型:不详难度:| 查看答案
如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).
(1)求经过A、B、C三点的抛物线解析式;
(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与△ABC相似吗?
请说明理由.
题型:不详难度:| 查看答案
已知二次函数图象的顶点横坐标是2,与x轴交于A(x1,0)、
B(x2,0),x1﹤0﹤x2,与y轴交于点C,O为坐标原点,
(1)求证:
(2)求m、n的值;
(3)当p﹥0且二次函数图象与直线仅有一个交点时,求二次函数的最大值.
题型:不详难度:| 查看答案
如图14,已知点A(-1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=900,抛物线经过A、B、C三点,其顶点为M.
求抛物线的解析式;
试判断直线CM与以AB为直径的圆的位置关系,并加以证明;
在抛物线上是否存在点N,使得?如果存在,那么这样的点有几个?如果不存在,请说明理由。
题型:不详难度:| 查看答案
问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数的图象:
x
···



1
2
3
4
···
y
 
 
 
 
 
 
 
 
 
 

(2)观察猜想:观察该函数的图象,猜想当x=        时,函数有最   值(填
“大”或“小”),是         .
(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.