当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段O...
题目
题型:不详难度:来源:
如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2
(1)求抛物线的解析式.
(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.
(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.
答案
(1)(2)P(﹣2,)(3)存在,(﹣1,﹣4)或(﹣3,﹣2)
解析
解:(1)∵AB⊥x轴,AB=3,tan∠AOB=,∴OB=4。
∴B(﹣4,0),B1(0,﹣4),A2(3,0)。
∵抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2
,解得
∴抛物线的解析式为:
(2)点P是第三象限内抛物线上的一点,
如图,过点P作PC⊥x轴于点C.

设点P的坐标为(m,n),
则m<0,n<0,
∴PC=|n|=﹣,OC=|m|=﹣m,
BC=OB﹣OC=|﹣4|﹣|m|=4+m。


∴当m=﹣2时,△PBB1的面积最大,这时,n=,即点P(﹣2,)。
(3)存在。
假设在第三象限的抛物线上存在点Q(x0,y0),使点Q到线段BB1的距离为
如图,过点Q作QD⊥BB1于点D,设Q(xQ,yQ),

由(2)可知,此时△QBB1的面积可以表示为:

在Rt△OBB1中,

,解得xQ=﹣1或xQ=﹣3。
当xQ=﹣1时,yQ=﹣4;当xQ=﹣3时,yQ=﹣2。
因此,在第三象限内,抛物线上存在点Q,使点Q到线段BB1的距离为,这样的点Q的坐标是(﹣1,﹣4)或(﹣3,﹣2)。
(1)根据旋转的性质确定点B、B1、A2三点的坐标,利用待定系数法求得抛物线的解析式。
(2)求出△PBB1的面积表达式,这是一个关于P点横坐标的二次函数,利用二次函数求极值的方法求出△PBB1面积的最大值。
(3)引用(2)问中三角形面积表达式的结论,利用此表达式表示出△QBB1的面积,然后解一元二次方程求得Q点的坐标。
核心考点
试题【如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段O】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,抛物线与x轴交于C.A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点.
(1)分别求出点A.点B的坐标;
(2)求直线AB的解析式;
(3)若反比例函数的图象过点D,求k值;
(4)两动点P、Q同时从点A出发,分别沿AB.AO方向向B.O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.

题型:不详难度:| 查看答案
已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连结DP,作CN⊥DP于点M,且交直线AB于点N,连结OP,ON。(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)
(1)请从图1,图2中任选一图证明下面结论:
①BN=CP:   ②OP=ON,且OP⊥ON
(2) 设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系。

题型:不详难度:| 查看答案
在平面直角坐标系中,若将抛物线y=2x2 - 4x+3先向右平移3个单位长度,再
向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是【   】
A.(-2,3)B.(-1,4)C.(1,4)D.(4,3)

题型:不详难度:| 查看答案
如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为
(-3,0),经过B点的直线交抛物线于点D(-2,-3).
(1)求抛物线的解析式和直线BD解析式;
(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-l)三点,过坐标原点O的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,-2)作平行于x轴的直线

(1)求抛物线对应二次函数的解析式;
(2)求证以ON为直径的圆与直线相切;
(3)求线段MN的长(用k表示),并证明M、N两点到直线的距离之和等于线段MN的长.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.