当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知二次函数。(1)求证:对于任意实数m,该二次函数图象与x轴总有公共点;(2)若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标。...
题目
题型:不详难度:来源:
已知二次函数
(1)求证:对于任意实数m,该二次函数图象与x轴总有公共点;
(2)若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标。
答案
(1)有(2)
解析
(1)
(2)
(1)依题意可得△=9m2得出△≥0,可得出二次函数图象与x轴总有公共点;
(2)把已知坐标代入可得m值,然后把m的值及y=0代入二次函数可求出点B的坐标.
核心考点
试题【已知二次函数。(1)求证:对于任意实数m,该二次函数图象与x轴总有公共点;(2)若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标。】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图一,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6),D是BC边上的动点(与点B,C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,将△BDE沿DE翻折,得到△GDE,并使直线DG、DF重合。
(1)如图二,若翻折后点F落在OA边上,求直线DE的函数关系式;
(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;
(3)一般地,请你猜想直线DE与抛物线的公共点的个数,在图二的情形中通过计算验证你的猜想;如果直线DE与抛物线始终有公共点,请在图一中作出这样的公共点。

题型:不详难度:| 查看答案
在梯形中,,点分别在线段上(点与点不重合),且,设

(1)求的函数表达式;
(2)当为何值时,有最大值,最大值是多少?
题型:不详难度:| 查看答案
时,下列函数中,函数值随自变量增大而增大的是            (只填写序号)
;②;③;④
题型:不详难度:| 查看答案
丁丁推铅球的出手高度为,在如图所示的直角坐标系中,求铅球的落点与丁丁的距离.
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c过点A(0,2)、B(),且点B关于原点的对称点C也在该抛物线上.
⑴求a、b、c的值;
⑵①这条抛物线上纵坐标为的点共有         个;
②请写出: 函数值y随着x的增大而增大的x的一个范围          
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.