当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知:二次函数y=x2+bx+c与x轴相交于A(x1,0)、B(x2,0)两点,其顶点坐标为P(,),AB=|x1-x2|,若S△APB=1,则b与c的关系式是...
题目
题型:不详难度:来源:
已知:二次函数y=x2+bx+c与x轴相交于A(x1,0)、B(x2,0)两点,其顶点坐标为P(),AB=|x1-x2|,若S△APB=1,则b与c的关系式是(  ).
A.b2-4c+1=0B.b2-4c-1=0C.b2-4c+4=0D.b2-4c-4=0

答案
D
解析

试题分析:由于抛物线顶点坐标为P(),AB=|x1-x2|,根据根与系数的关系把AB的长度用b、c表示,而S△APB=1,然后根据三角形的面积公式就可以建立关于b、c的等式.







故选D.
点评:本题综合性强,难度较大,是中考常见题,题目比较典型.
核心考点
试题【已知:二次函数y=x2+bx+c与x轴相交于A(x1,0)、B(x2,0)两点,其顶点坐标为P(,),AB=|x1-x2|,若S△APB=1,则b与c的关系式是】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知抛物线)与轴相交于点,顶点为.直线 分别与轴,轴相交于两点,并且与直线相交于点.
(1)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(2)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.
题型:不详难度:| 查看答案
已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2
题型:不详难度:| 查看答案
如图,抛物线与直线AB交于x轴上的一点A,和另一点B(4,n).点P是抛物线AB两点间部分上的一个动点(不与点AB重合),直线PQ与直线AB垂直,交直线AB于点Q

(1)求抛物线的解析式和cos∠BAO的值。
(2)设点P的横坐标为用含的代数式表示线段PQ的长,并求出线段PQ长的最大值;
(3)点E是抛物线上一点,过点E作EF∥AC,交直线AB与点F,若以E、F、A、C为顶点的四边形为平行四边形,直接写出相应的点E的坐标.
题型:不详难度:| 查看答案
对于的图象下列叙述正确的是(  )
A.顶点坐标为(-3,2)B.对称轴为直线=3
C.当=3时,有最大值2D.当≥3时增大而减小

题型:不详难度:| 查看答案
如图,抛物线轴相交于点,且经过点(5,4).该抛物线顶点为

(1)求的值和该抛物线顶点的坐标.
(2)求的面积;
(3)若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.