当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在平面直角坐标系中,二次函数的图象交x轴于两点,交轴于点,点为抛物线的顶点,且两点的横坐标分别为1和4.(1)求点B的坐标;(2)求二次函数的函数表达式;...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,二次函数的图象交x轴于两点,交轴于点,点为抛物线的顶点,且两点的横坐标分别为1和4.

(1)求点B的坐标;
(2)求二次函数的函数表达式;
(3)在(2)的抛物线上,是否存在点P,使得45°?若存在,求出点P的坐标;若不存在,请说明理由.
答案
(1)B(7,0);(2);(3)P(6,5)或P(8,-7)
解析

试题分析:(1)根据C点的横坐标为4可得抛物线的对称轴为x=4,根据抛物线的对称性即可求得结果;
(2)把点A、B的坐标代入函数关系式,即可根据待定系数法求得结果;
(3)设存在P(x,y)使得∠BAP=45°,分①P在x轴上方,②P在x轴下方,根据抛物线上的点的坐标的特征即可求得结果.
(1)∵两点的横坐标分别为1和4
∴抛物线的对称轴为x=4
∴点B的坐标为(7,0);
(2)∵A(1,0),B(7,0)在抛物线



(3)设存在P(x,y)使得∠BAP=45°
①P在x轴上方的时候,做PE⊥x轴于E,则x-1=y
即:x-1=
解得(舍去)
②P在x轴下方的时候,做PE⊥x轴于F,则x-1=-y
即:x-1=
解得(舍去)
∴存在点P(6,5)或P(8,-7)使得∠BAP=45°.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
核心考点
试题【如图,在平面直角坐标系中,二次函数的图象交x轴于两点,交轴于点,点为抛物线的顶点,且两点的横坐标分别为1和4.(1)求点B的坐标;(2)求二次函数的函数表达式;】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是(  )
A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1

题型:不详难度:| 查看答案
y=x2+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )。
A.a=5B.a≥5C.a=3D.a≥3

题型:不详难度:| 查看答案
如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.

(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是       _。
题型:不详难度:| 查看答案
2012年7月6日在湖南省展览馆举行了长沙动漫展,很多中学生也对动漫产生了浓厚
的兴趣,某动漫公司决定在假期举行一次中学生动漫画展,经调查发现,活动最低票价
为10元,如果以10元票价开放,平均每天有100个学生来观看,若票价每提高1元,
则相应减少10个参观者。
(1)(4分)写出平均每天观看动漫展的学生人数y(单位:人)与票价x (x为整数,单位:元)之间的关系;
(2)(6分)如果要使每天总收入为910元,票价应定为多少元?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.