当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,已知二次函数的图象与轴相交于两个不同的点、,与轴的交点为.设的外接圆的圆心为点.(1)求与轴的另一个交点D的坐标;(2)如果恰好为的直径,且的面积等于,求...
题目
题型:不详难度:来源:
如图,已知二次函数的图象与轴相交于两个不同的点,与轴的交点为.设的外接圆的圆心为点

(1)求轴的另一个交点D的坐标;
(2)如果恰好为的直径,且的面积等于,求的值.
答案
(1)(0,1);(2)
解析

试题分析:(1)令x=0,代入抛物线解析式,即求得点C的坐标.由求根公式求得点A、B的横坐标,得到点A、B的横坐标的和与积,由相交弦定理求得OD的值,从而得到点D的坐标.
(2)当AB又恰好为⊙P的直径,由垂径定理知,点C与点D关于x轴对称,故得到点C的坐标及k的值.根据一元二次方程的根与系数的关系式表示出AB线段的长,由三角形的面积公式表示出△ABC的面积,可求得m的值.
(1)易求得点的坐标为
由题设可知是方程 的两根,
所以

∵⊙P与轴的另一个交点为D,由于AB、CD是⊙P的两条相交弦,设它们的交点为点O,连结DB,
∴△AOC∽△DOC,则
由题意知点轴的负半轴上,从而点D在轴的正半轴上,
所以点D的坐标为(0,1);
(2)因为AB⊥CD, AB又恰好为⊙P的直径,则C、D关于点O对称,
所以点的坐标为,即

所以解得
点评:本题知识点较多,综合性强,难度较大,是中考常见题,如何表示OD及AB的长是本题中解题的关键.
核心考点
试题【如图,已知二次函数的图象与轴相交于两个不同的点、,与轴的交点为.设的外接圆的圆心为点.(1)求与轴的另一个交点D的坐标;(2)如果恰好为的直径,且的面积等于,求】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,抛物线轴交于两点,与轴交于点.

(1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标;
(2)经探究可知,的面积比不变,试求出这个比值;
(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
题型:不详难度:| 查看答案
向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是
A.第8秒B.第10秒C.第12秒D.第15秒

题型:不详难度:| 查看答案
“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2-2x=-2实数根的情况是
A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根

题型:不详难度:| 查看答案
(1)求二次函数y=x2-4x+1图象的顶点坐标,并指出当x在何范围内取值时,y随x的增大而减小;
(2)若二次函数y=x2-4x+c的图象与坐标轴有2个交点,求字母c应满足的条件.
题型:不详难度:| 查看答案
抛物线的部分图象如图所示,若y>0,则的取值范围是(   )
A.B.
C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.