当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知如图,抛物线与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.M为y轴负半轴上的一个动点,直线M...
题目
题型:不详难度:来源:
已知如图,抛物线与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.M为y轴负半轴上的一个动点,直线MB交⊙P于点D,交抛物线于点N。

(1)请直接写出答案:点A坐标         ,⊙P的半径为          
(2)求抛物线的解析式;
(3)若,求N点坐标;
(4)若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.
答案
(1)(0,2),;(2);(3)(6,5);(4)
解析

试题分析:(1)根据抛物线与坐标轴的交点坐标的特征结合切线的性质求解即可;
(2)根据抛物线过B(1,0)、C(4,0),设y=a(x-1)(x-4),再把A(0,2)代入求即;
(3)设N点坐标为(x0,y0),由题意有,即可求得y0的值,再根据函数图象上的点的坐标的特征求解即可;
(4)根据题意∠OAB=∠ADB,所以△AOB和△ABD相似有两种情况:①∠ABD和∠AOB对应,此时AD是⊙P的直径;②∠BAD和∠AOB对应,此时BD是⊙P的直径,所以直线MB过P点,分别根据相似三角形的性质求解即可.
(1)A点坐标是(0,2),⊙P的半径长为
(2)抛物线过B(1,0)、C(4,0),设y=a(x-1)(x-4)
将A(0,2)代入得4a=2,解得a=
抛物线的解析式是:
(3)设N点坐标为(x0,y0),由题意有
,解得y0=5
∵N点在抛物线上  

解得 x0=6或 x0=1(不合题意,舍去)
∴N点的坐标为(6,5);
(4)根据题意∠OAB=∠ADB,所以△AOB和△ABD相似有两种情况:
①∠ABD和∠AOB对应,此时AD是⊙P的直径

则AB=,AD=5
∴ BD=2
∵Rt△AMB∽Rt△DAB
∴ MA:AD=AB:BD 即 MA=
∵Rt△AMB∽Rt△DMA
∴MA:MD=MB:MA
即 MB·MD=MA2= 
②∠BAD和∠AOB对应,此时BD是⊙P的直径,所以直线MB过P点

∵B(1,0),P(,2)
∴直线MB的解析式是:
∴M点的坐标为(0, 
∴AM=
由△MAB∽△MDA得MA:MD=MB:MA
∴MB·MD=MA2=.
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
核心考点
试题【已知如图,抛物线与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.M为y轴负半轴上的一个动点,直线M】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知抛物线

(1)求证:无论为任何实数,抛物线与x轴总有两个交点;
(2)若为整数,当关于x的方程的两个有理数根都在之间(不包括-1、)时,求的值.
(3)在(2)的条件下,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,再将图象向上平移个单位,若图象与过点(0,3)且与x轴平行的直线有4个交点,直接写出n的取值范围是                
题型:不详难度:| 查看答案
已知抛物线轴交于两点,与轴交于点,连结是线段上一动点,以为一边向右侧作正方形,连结.若

(1)求抛物线的解析式;
(2)求证:
(3)求的度数;
(4)当点沿轴正方向移动到点时,点也随着运动,则点所走过的路线长是        
题型:不详难度:| 查看答案
二次函数y=-3x2-6x+5的图像的顶点坐标是
A.(-1,2)B.(1,-4)C.(-1,8)D.(1,8))

题型:不详难度:| 查看答案
如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.

(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.
题型:不详难度:| 查看答案
若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x
-7
-6
-5
-4
-3
-2
y
-27
-13
-3
3
5
3
则当x=1时,y的值为   (  )  
A.5        B.-3          C.-13         D.-27
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.