当前位置:初中试题 > 数学试题 > 二次函数定义 > 抛物线y = -(x+1)2+3的顶点坐标(   )A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)...
题目
题型:不详难度:来源:
抛物线y = -(x+1)2+3的顶点坐标(   )
A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)

答案
C
解析

试题分析:抛物线的顶点式为,它的顶点坐标为(-h,k),又因为抛物线y = -(x+1)2+3,所以它的顶点坐标是(-1,3)
点评:本题考查抛物线,考生解答本题的关键是掌握抛物线的顶点式,能根据抛物线的顶点式写出其顶点坐标来
核心考点
试题【抛物线y = -(x+1)2+3的顶点坐标(   )A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,二次函数的图象与 轴交于A(,0),B(2,0),且与轴交于点C.


(1)求该抛物线的解析式,并判断△ABC的形状;
(2)点P是x轴下方的抛物线上一动点, 连接PO,PC,
并把△POC沿CO翻折,得到四边形,求出使四边形为菱形的点P的坐标;
(3) 在此抛物线上是否存在点Q,使得以A,C,B,Q四点为顶点的四边形是直角梯形?若存在, 求出Q点的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
我们知道,经过原点的抛物线解析式可以是
(1)对于这样的抛物线:
当顶点坐标为(1,1)时,a=       
当顶点坐标为(m,m),m≠0时,a 与m之间的关系式是       
(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b;
(3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,B3,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长。
题型:不详难度:| 查看答案
已知抛物线过点A(1,0),顶点为B,且抛物线不经过第三象限。
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线经过点B,且于该抛物线交于另一点C(),求当x≥1时y1的取值范围。
题型:不详难度:| 查看答案
如图,二次函数(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>2.其中正确的个数是

A.1         B.2         C.3           D.4
题型:不详难度:| 查看答案
已知抛物线的顶点A(2,0),与y轴的交点为B(0,-1).

(1)求抛物线的解析式;
(2)在对称轴右侧的抛物线上找出一点C,使以BC为直径的圆经过抛物线的顶点A.并求出点C的坐标以及此时圆的圆心P点的坐标.
(3)在(2)的基础上,设直线x=t(0<t<10)与抛物线交于点N,当t为何值时,△BCN的面积最大,并求出最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.