当前位置:初中试题 > 数学试题 > 二次函数定义 > 某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.(1)平均每天的销售量...
题目
题型:不详难度:来源:
某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.
(1)平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为         
(2)求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;
(3)物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?
答案
(1)﹣3x+240;
(2)﹣3x2+360x﹣9600;
(3)每件玩具的销售价为55元时,可获得1125元的最大利润
解析

试题分析:(1)平均每天销售量y=原来的销售量90﹣3×相对于50元的单价提高的价格;
(2)销售利润W=单价的利润×平均每天的销售量,代入即可得出W与x的函数关系式.
(3)根据题中所给的自变量的取值,结合(2)得到的关系式,即可求得二次函数的最值.
解:(1)由题意得:y=90﹣3(x﹣50)=﹣3x+240;
(2)W=(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;
(3)y=﹣3x2+360x﹣9600=﹣3(x﹣60)2+1200,
故当x=60时,y取最大值1200,
∵x=60是二次函数的对称轴,且开口向下,
∴当x<60时,y随x的增大而增大,
∵规定每件售价不得高于55元,
∴当x=55时,W取得最大值为1125元,
即每件玩具的销售价为55元时,可获得1125元的最大利润.
点评:本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.
核心考点
试题【某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.(1)平均每天的销售量】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.

(1) 求b,c的值。
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.
(3) 如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.

题型:不详难度:| 查看答案
函数在同一坐标系中的大致图象是(   )
A.B.C.D.

题型:不详难度:| 查看答案
二次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是直线(    )
A.B.C.D.

题型:不详难度:| 查看答案
如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴相交于负半轴.给出四个结论:①;②;③;④.其中结论正确的个数为 (   )
A.1B.2 C.3D.4

题型:不详难度:| 查看答案
如图,矩形纸片ABCD中,BC=4,AB=3,点P是BC边上的动点(点P不与点B、C重合).现将△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分线,交AB于点E.设BP=" x,BE=" y,则下列图象中,能表示y与x的函数关系的图象大致是(      )

A、 B、  C、 D、
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.