当前位置:初中试题 > 数学试题 > 二次函数定义 > 锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的...
题目
题型:不详难度:来源:
锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0).

(1)求△ABC中边BC上高AD;
(2)当x为何值时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
答案
(1)4;(2)2.4(或);(3)3,6.
解析

试题分析:(1)本题利用矩形的性质和相似三角形的性质,根据MN∥BC,得△AMN∽△ABC,求出△ABC中边BC上高AD的长度.
(2)因为正方形的位置在变化,但是△AMN∽△ABC没有改变,利用相似三角形对应边上高的比等于相似比,得出等量关系,代入解析式,
(3)用含x的式子表示矩形MEFN边长,从而求出面积的表达式.
试题解析:(1)由BC=6,S△ABC=12,得AD=4;
(2)当PQ恰好落在边BC上时,
∵MN∥BC,∴△AMN∽△ABC.
,

解得,x=2.4(或
∴当x=2.4(或)时正方形MPQN的边P恰好落在BC边上;
(3)设MP、NQ分别与BC相交于点E、F,
设HD=a,则AH=4-a,


解得,
∵矩形MEFN的面积=MN×HD,
∴y=x()= = (0<x≤6).
当x=3时,y最大为6.
考点: 1.二次函数综合题;2.矩形的性质;3.相似三角形的判定与性质.
核心考点
试题【锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
抛物线的顶点坐标是( )
A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)

题型:不详难度:| 查看答案
若二次函数的图象经过点P(-2,4),则该图象必经过点
A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)

题型:不详难度:| 查看答案
二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则正确的结论是(  )
A.abc>0B.3a +c<0C.4a+2b+c<0D.b2 -4ac<0

题型:不详难度:| 查看答案
如图,直线AB分别交y轴、x 轴于A、B两点,OA=2,,抛物线过A、B两点.

(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN的长度l有最大值?最大值是多少?
题型:不详难度:| 查看答案
如图,已知:为边长是的等边三角形,四边形为边长是6的正方形. 现将等边和正方形按如图①的方式摆放,使点与点重合,点在同一条直线上,从图①的位置出发,以每秒1个单位长度的速度沿方向向右匀速运动,当点与点重合时暂停运动,设的运动时间为秒().

(1)在整个运动过程中,设等边和正方形重叠部分的面积为,请直接写出之间的函数关系式;
(2)如图②,当点与点重合时,作的角平分线于点,将绕点逆时针旋转,使边与边重合,得到. 在线段上是否存在点,使得为等腰三角形. 如果存在,求线段的长度;若不存在,请说明理由.
(3)如图③,若四边形为边长是的正方形,的移动速度为每秒 个单位长度,其余条件保持不变. 开始移动的同时,点从点开始,沿折线以每秒个单位长度开始移动,停止运动时,点也停止运动. 设在运动过程中,交折线点,则当时,求的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.