当前位置:初中试题 > 数学试题 > 二次函数定义 > 矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若抛物线经过A...
题目
题型:不详难度:来源:
矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.

(1)求点D的坐标;
(2)若抛物线经过A、D两点,试确定此抛物线的解析式;
(3)设(2)中的抛物线的对称轴与直线AD交于点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.
答案
(1)点D的坐标为(2,3);
(2) 抛物线的解析式为;
(3) 符合条件的点P有两个,P1 (3,0)、P2 (3,-4).
解析

试题分析:(1)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出答案.
(2)A、D,两点坐标已知,把它们代入二次函数解析式中,得出两个二元一次方程,联立求解可以得出答案.
(3)由题目分析可以知道∠B=90°,以P、A、M为顶点的三角形与△ABD相似,所以应有∠APM、∠AMP或者∠MAP等于90°,很明显∠AMP不可能等于90°,所以有两种情况.
解:(1) ∵四边形OABC为矩形,C(0,3)
∴BC∥OA,点D的纵坐标为3.
∵直线与BC边相交于点D,
. ∴点D的坐标为(2,3).
(2) ∵若抛物线经过A(6,0)、D(2,3)两点,

解得:∴抛物线的解析式为
(3) ∵抛物线的对称轴为x=3,
设对称轴x=3与x轴交于点P1,∴BA∥MP1
∴∠BAD=∠AMP1.

①∵∠AP1M=∠ABD=90°,∴△ABD∽△AMP1.
∴P1 (3,0).
②当∠MAP2=∠ABD=90°时,△ABD∽△MAP2.
∴∠AP2M=∠ADB
∵AP1=AB,∠AP1 P2=∠ABD=90°
∴△AP1 P2≌△ABD
∴P1 P2=BD=4
∵点P2在第四象限,∴P2 (3,-4). 
∴符合条件的点P有两个,P1 (3,0)、P2 (3,-4).
核心考点
试题【矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若抛物线经过A】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
二次函数的图象如图所示,将其绕坐标原点O旋转,则旋转后的抛物线的解析式为(    )
A.B.
C.D.

题型:不详难度:| 查看答案
如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上, C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是(    )


A.                  B.                  C.                  D.
题型:不详难度:| 查看答案
已知点P(-1,m)在二次函数的图象上,则m的值为           ;平移此二次函数的图象,使点P与坐标原点重合,则平移后的函数图象所对应的解析式为                  .
题型:不详难度:| 查看答案
已知抛物线经过(0,-1),(3,2)两点.求它的解析式及顶点坐标.
题型:不详难度:| 查看答案
如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为米,面积为平方米.(注:的近似值取3)

(1)求出的函数关系式,并写出自变量的取值范围;
(2)当半径为何值时,扇形花坛的面积最大,并求面积的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.