当前位置:初中试题 > 数学试题 > 二次函数定义 > 抛物线y=(1-k)x2-2x-1与x轴有两个交点,则k的取值范围是      ....
题目
题型:不详难度:来源:
抛物线y=(1-k)x2-2x-1与x轴有两个交点,则k的取值范围是      
答案
k<2,且k≠1.
解析

试题分析:△=4﹣4(1﹣k)(﹣1)>0,则k<2,
由于1﹣k≠0,所以k≠1.
故答案是k<2,且k≠1.
考点:抛物线与x轴的交点.
核心考点
试题【抛物线y=(1-k)x2-2x-1与x轴有两个交点,则k的取值范围是      .】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A.B.C,求ac的值.

题型:不详难度:| 查看答案
宁波元康水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.
(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?
(2)若该批发商单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.
题型:不详难度:| 查看答案
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲.乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式 .

(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,小华的身高为               ;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围                  
题型:不详难度:| 查看答案
某跳水运动员进行10m跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为己知条件).在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.

(l)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为,问:此次跳水会不会失误?通过计算说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,已知点坐标为(2,4),直线x=2与轴相交于点,连结,抛物线y=x从点沿方向平移,与直线x=2交于点,顶点点时停止移动.

(1)求线段所在直线的函数解析式;
(2)设抛物线顶点的横坐标为,
①用的代数式表示点的坐标;
②当为何值时,线段最短;
(3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.