当前位置:初中试题 > 数学试题 > 二次函数定义 > (12分)如图,在直角坐标系中,已知点A(0,2),点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.(1)填空:点D的...
题目
题型:不详难度:来源:
(12分)如图,在直角坐标系中,已知点A(0,2),点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.

(1)填空:点D的坐标为         ,点E的坐标为          
(2)若抛物线y=aa2+ba+c(a≠0)经过A,D,E三点,求该抛物线的解析式;
(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.
① 在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围;
② 运动停止时,请直接写出此时的抛物线的顶点坐标.
答案
(1)D(﹣1,3)、E(﹣3,2);
(2)
(3)①S与x的函数关系式为:当0<t≤时,S=5t2,当<t≤1时,S=5t﹣,当1<t≤时,S=﹣5t2+15t﹣;②运动停止时,抛物线的顶点坐标为().
解析

试题分析:(1)构造全等三角形,由全等三角形对应线段之间的相等关系,求出点D、点E的坐标;
(2)利用待定系数法求出抛物线的解析式;
(3)本问非常复杂,须小心思考与计算:
①为求s的表达式,需要识别正方形(与抛物线)的运动过程.正方形的平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图(3)a;当<t≤1时,对应图(3)b;当1<t≤时,对应图(3)c.每个阶段的表达式不同,请对照图形认真思考;
②当运动停止时,点E到达y轴,点E(﹣3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标.
试题解析:(1)由题意可知:OB=2,OC=1.
如图(1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G.

易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(﹣1,3);
同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(﹣3,2).
∴D(﹣1,3)、E(﹣3,2);
(2)抛物线经过(0,2)、(﹣1,3)、(﹣3,2),
,解得

(3)①当点D运动到y轴上时,t=
当0<t≤时,如图(3)a所示.

设D′C′交y轴于点F
∵tan∠BCO==2,又∵∠BCO=∠FCC′
∴tan∠FCC′=2,即=2
∵CC′=t,∴FC′=2t.
∴S△CC′F=CC′•FC′=t=5t2
当点B运动到点C时,t=1.
<t≤1时,如图(3)b所示.

设D′E′交y轴于点G,过G作GH⊥B′C′于H.
在Rt△BOC中,BC=
∴GH=,∴CH=GH=
∵CC′=t,∴HC′=t﹣,∴GD′=t﹣
∴S梯形CC′D′G=t﹣+t)=5t﹣
当点E运动到y轴上时,t=
当1<t≤时,如图(3)c所示

设D′E′、E′B′分别交y轴于点M、N
∵CC′=t,B′C′=
∴CB′=t﹣,∴B′N=2CB′=t﹣
∵B′E′=,∴E′N=B′E′﹣B′N=t
∴E′M=E′N=t)
∴S△MNE′=t)•t)=5t2﹣15t+
∴S五边形B′C′D′MN=S正方形B′C′D′E′﹣S△MNE′=﹣(5t2﹣15t+)=﹣5t2+15t﹣
综上所述,S与x的函数关系式为:
当0<t≤时,S=5t2
<t≤1时,S=5t﹣
当1<t≤时,S=﹣5t2+15t﹣
②当点E运动到点E′时,运动停止.如图(3)d所示

∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′
∴△BOC∽△E′B′C

∵OB=2,B′E′=BC=

∴CE′=
∴OE′=OC+CE′=1+=
∴E′(0,
由点E(﹣3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.

∴原抛物线顶点坐标为(
∴运动停止时,抛物线的顶点坐标为().
核心考点
试题【(12分)如图,在直角坐标系中,已知点A(0,2),点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.(1)填空:点D的】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为                     

题型:不详难度:| 查看答案
某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,
薄板的边长(cm)
20
30
出厂价(元/张)
50
70
⑴求一张薄板的出厂价与边长之间满足的函数关系式;
⑵已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).
①求一张薄板的利润与边长这之间满足的函数关系式.
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。

⑴求这个二次函数的表达式;
⑵连结PO、PC,在同一平面内把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
⑶当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.
题型:不详难度:| 查看答案
对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数的较小值,则函数y的最大值是
A.3B.4  C.5D.6

题型:不详难度:| 查看答案
把抛物线向左平移一个单位,所得抛物线的表达式为:                
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.