当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(...
题目
题型:不详难度:来源:
如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。
答案
(1);(2)9;(3)△AOB∽△DBE.理由见解析.
解析

试题分析:(1)已知了抛物线图象上的三点坐标,可用待定系数法求出抛物线的解析式;
(2)根据抛物线的解析式,易求得抛物线顶点D的坐标;过D作DF⊥x轴于F,那么四边形AEDB的面积就可以由△AOB、△DEF、梯形BOFD的面积和求得.
(3)先判定△DBE是直角三角形,即可得证△AOB∽△DBE.
试题解析:(1)∵抛物线与y轴交于点(0,3),

∴设抛物线解析式为
根据题意,得
解得
∴抛物线的解析式为
(2)由顶点坐标公式求得顶点坐标为(1,4)
设对称轴与x轴的交点为F
∴四边形ABDE的面积= 


(3)相似
如图,



即:,所以△BDE是直角三角形
∴∠AOB=∠DBE=90°,且
∴△AOB∽△DBE.
考点: 二次函数综合题.
核心考点
试题【如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
下列关于抛物线的关系说法中,正确的是( )
A.它们的形状相同,开口也相同;
B.它们都关于轴对称;
C.它们的顶点不相同;
D.点()既在抛物线上也在

题型:不详难度:| 查看答案
将二次函数的图像向下平移1个单位后,它的顶点恰好落在轴上,则   
题型:不详难度:| 查看答案
一个边长为3厘米的正方形,若它的边长增加厘米,面积随之增加平方厘米,则关于的函数解析式是    .(不写定义域)
题型:不详难度:| 查看答案
已知:抛物线经过A(,0)、B(5,0)两点,顶点为P.
求:(1)求b,c的值;
(2)求△ABP的面积;
(3)若点C()和点D()在该抛物线上,则当时,
请写出的大小关系.
题型:不详难度:| 查看答案
将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为(  )
A.﹣5B.5C.3D.﹣3

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.