当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD...
题目
题型:不详难度:来源:
如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G,如图①.

⑴ 求CD的长及∠1的度数;
⑵ 设DE = x,△GEF与梯形ABCD重叠部分的面积为y.求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?
⑶ 当点G刚好落在线段BC上时,如图②,若此时将所得到的△EFG沿直线CB向左平移,速度为每秒1个单位,当E点移动到线段AB上时运动停止.设平移时间为t(秒),在平移过程中是否存在某一时刻t,使得△ABE为等腰三角形?若存在,请直接写出对应的t的值;若不存在,请说明理由.
答案
(1)CD= ,∠1 =30°;(2)当x=时,y的值最大,y的最大值为;(3)存在, t=9或t=9﹣2或t=12﹣
解析

试题分析:(1)过点A作AH⊥BC于点H,构建Rt△AHB和矩形AHCD;通过解直角三角形、矩形的性质求得CD=AH=.则,故∠CAD=30°;然后由平行线的性质推知∠1=∠CAD=30°;
(2)根据△EFG≌△EFD列出y的表达式,从而讨论x的范围,分别得出可能的值即可;
(3)需要分类讨论:以AB为底和以AB为腰的情况.
试题解析:(1)过点A作AH⊥BC于点H.

∵在Rt△AHB中,AB=6,∠B=60°,
∴AH=AB•sinB=
∵四边形ABCD为直角梯形
∴四边形AHCD为矩形
∴CD=AH=

∴∠CAD=30°
∵EF∥AC
∴∠1=∠CAD=30°;
(2)点G恰好在BC上,由对折的对称性可知△FGE≌△FDE,

∴GE=DE=x,∠FEG=∠FED=60°
∴∠GEC=60°
∵△CEG是直角三角形
∴∠EGC=30°
∴在Rt△CEG中,EC=EG=x
由DE+EC=CD 得
∴x=
时,

y=S△EGF=S△EDF=·DE·DF=x=x2
>0,对称轴为y轴
∴当,y随x的增大而增大
∴当x=时,y最大值=
<x≤时,设FG,EG分别交BC于点M、N

∵DE=x,
∴EC=﹣x,NE=2(﹣x),
∴NG=GE﹣NE=3x﹣
又∵∠MNG=∠ENC=30°,∠G=90°,
∴MG=NG•tan30°=

y=S△EGF﹣S△MNG==
,对称轴为直线
∴当<x≤时,y有最大值,
∴当x=时,
综合两种情形:由于
∴当x=时,y的值最大,y的最大值为
(3)由题意可知:AB=6,分三种情况:
①若AE=BE,解得t=9
②若AB=AE,解得t=9﹣2
③若BA=BE,解得t=12﹣
核心考点
试题【如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
平面直角坐标中,对称轴平行于y轴的抛物线经过原点O,其顶点坐标为(3,);Rt△ABC的直角边BC在x轴上,直角顶点C的坐标为(,0),且BC=5,AC=3(如图1).

图1                             图2
(1)求出该抛物线的解析式;
(2)将Rt△ABC沿x轴向右平移,当点A落在(1)中所求抛物线上时Rt△ABC停止移动.D(0,4)为y轴上一点,设点B的横坐标为m,△DAB的面积为s.
①分别求出点B位于原点左侧、右侧(含原点O)时,s与m之间的函数关系式,并写出相应自变量m的取值范围(可在图1、图2中画出探求);
②当点B位于原点左侧时,是否存在实数m,使得△DAB为直角三角形?若存在,直接写出m的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).

(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.
题型:不详难度:| 查看答案
已知点A(1,2)和B(-2,5),试求出两个二次函数,使它们的图象都经过A、B两点.
题型:不详难度:| 查看答案
矩形ABCD中,AD=8 cm,AB=6 cm.动点E从点C开始沿边CB向点B以2 cm/s的速度运动至点B停止,动点F从点C同时出发沿边CD向点D以1 cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的

题型:不详难度:| 查看答案
如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是
A.一直增大                    B.一直减小
C.先减小后增大                D.先增大后减小
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.