当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与轴交于A,B两点,∠ACD=90°,抛物线经过A,B,C三点.(1)求证:∠CAO=∠C...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与轴交于A,B两点,∠ACD=90°,抛物线经过A,B,C三点.
(1)求证:∠CAO=∠CAD;
(2)求弦BD的长;
(3)在抛物线的对称轴上是否存在点P使ΔPBC是以BC为腰的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

答案
(1)证明见解析;(2)8;(3)
解析

试题分析:(1)利用切线的性质性质得出∠MCO=90°,进而得出∠OCA=∠MCD=∠MDC,再利用∠OCA+∠OAC=90°求出即可;
(2)利用圆周角定里以及平行线的性质,首先得出四边形COMN为矩形,进而求出BD=2MN;
(3)分别利用当CP=CB时,△PCB为等腰三角形,当BP=BC时,△PCB为等腰三角形,利用勾股定理求出即可.
(1)证明:如图1,连接MC,
∵⊙M与y轴相切于点C,∴CM⊥OC,
∴∠MCO=90°,
又∵∠ACD=90°
∴AD为⊙M的直径,
∵DM=CM,∠ACD+∠ADC=90°
∴∠MCD=∠MDC,
∵∠OCA+∠ACM=∠OCM=90°
∴∠MCD+∠ACM=90°
∴∠OCA=∠MCD=∠MDC
∵∠OCA+∠OAC=90°
∴∠OAC=∠CAD;

(2)解:如图1,过点M作MN⊥OB于点N,
由(1)可知,AD是⊙M的直径,
∴∠ABD=90°,
∵MN⊥AB,∴∠MNA=90°,
∴MN∥BD,

∵∠OCM=∠CON=∠MNO=90°,
∴四边形COMN为矩形,
∴MN=CO=4,
∴BD=2MN=8;
(3)解:抛物线的对称轴上存在点P,使ΔPBC是以BC为腰的等腰三角形.
在⊙M中,弧AC=弧AC,∴∠ADC=∠ABC,
由(1)知,∠ADC=∠OCA,
∴∠OCA=∠OBC
在Rt△CAO和Rt△BOC中,
tan∠OCA=
∴tan∠OBC=
∴OB=2OC=8
∴A(2,0),B(8,0)
∵抛物线经过A,B两点,
∴A,B关于抛物线的对称轴对称,其对称轴为直线:
当CP=CB=5时,△PCB为等腰三角形,
在Rt△COB中,
如图,在Rt△CM中,

80-25=55
,

同理可求的坐标是 
当BP=BC=5时,△PCB为等腰三角形,

 
同理可得坐标为
∴符合条件的点P有四个,坐标分别为
核心考点
试题【如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与轴交于A,B两点,∠ACD=90°,抛物线经过A,B,C三点.(1)求证:∠CAO=∠C】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.
⑴ 求出月销售量y(万件)与销售单价x(元)之间的函数关系式;
⑵ 求出月销售利润z(万元)与销售单价x(元)之间的函数关系式,并在下面坐标系中,画出图象草图;

⑶ 为了使月销售利润不低于480万元,请借助⑵中所画图象进行分析,说明销售单价的取值范围.
题型:不详难度:| 查看答案
如图,抛物线交坐标轴于A、B、D三点,过点D作轴的平行线交抛物线于点C.直线l过点E(0,-),且平分梯形ABCD面积.
⑴ 直接写出A、B、D三点的坐标;
⑵ 直接写出直线l的解析式;
⑶ 若点P在直线l上,且在x轴上方,tan∠OPB=,求点P的坐标.

题型:不详难度:| 查看答案
已知:二次函数中的满足下表:

……

0
1
2
3
……

……
0




……
(1)求的值;
(2)根据上表求时的的取值范围;
(3)若两点都在该函数图象上,且,试比较的大小.
题型:不详难度:| 查看答案
小明同学将直角三角板直角顶点置于平面直角坐标系的原点O,两直角边与抛物线分别相交于A、B两点.小明发现交点A、B两点的连线总经过一个固定点,则该点坐标为            

题型:不详难度:| 查看答案
如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴交于点A、B两点,与y轴交于点C.
(1)求A、B两点的坐标;
(2)若S△ABC=8,则过A、B、C三点的圆是否与抛物线有第四个交点D?若存在,求出D点坐标;若不存在,说明理由.
(3)将△OAC沿直线AC翻折,点O的对应点为O'.
①若O'落在该抛物线的对称轴上,求实数a的值;
②是否存在正整数a,使得点O'落在△ABC的内部,若存在,求出整数a的值;若不存在,请说明理由.

 
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.