当前位置:初中试题 > 数学试题 > 反比例函数定义 > 如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该...
题目
题型:不详难度:来源:
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

答案
(1)反比例函数的解析式为
(2)说明见解析;
(3)a的范围为
解析

试题分析:(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入即可得到m=2,从而可确定反比例函数的解析式;
(2)把x=3代入y=kx+3-3k(k≠0)得到y=3,即可说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)设点P的横坐标为a,由于一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由得到,于是得到a的取值范围.
(1)∵四边形ABCD是平行四边形,
∴AD=BC,
∵B(3,1),C(3,3),
∴BC⊥x轴,AD=BC=2,
而A点坐标为(1,0),
∴点D的坐标为(1,2).
∵反比例函数的函数图象经过点D(1,2),

∴m=2,
∴反比例函数的解析式为
(2)当x=3时,y=kx+3-3k=3k+3-3k=3,
∴一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)设点P的横坐标为a,
则a的范围为
核心考点
试题【如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该】;主要考察你对反比例函数定义等知识点的理解。[详细]
举一反三
在函数y=-的图象上有三个点为(x1,y1)、(x2,y2)、(x3,y3),若y1<0<y2<y3,则x1,x2,x3的大小关系是     
题型:不详难度:| 查看答案
如图,M为双曲线上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于D、C两点,若直线y=-x+m与y轴、x轴分别交于点A、B,则AD•BC的值为        

题型:不详难度:| 查看答案
如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为        

题型:不详难度:| 查看答案
如图,在反比例函数位于第一象限内的图象上取一点P1,连结OP1,作P1A1^x轴,垂足为A1,在OA1的延长线上截取A1 B1= OA1,过B1作OP1的平行线,交反比例函数的图象于P2,过P2作P2A2^x轴,垂足为A2,在OA2的延长线上截取A2 B2= B1A2,连结P1 B1,P2 B2,则的值是     

题型:不详难度:| 查看答案
如图,已知A1,A2,A3,…An是x轴上的点,且OA1=A1A2=A2A3=…=An﹣1An=1,分别过点A1,A2,A3,…An作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…Bn,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△BnPnBn+1的面积为Sn,则S1+S2+S3+…+Sn=      

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.