当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 台州椒江素有“中国被套绣衣之都”的美称,其产品畅销全球,某制造企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,椒江运往A、B、C...
题目
题型:不详难度:来源:
台州椒江素有“中国被套绣衣之都”的美称,其产品畅销全球,某制造企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,椒江运往A、B、C三地的运费分别是30元/件,8元/件,25元/件.设安排x件产品运往A地.
(1)当n=200时,①根据信息填表:
答案
核心考点
试题【台州椒江素有“中国被套绣衣之都”的美称,其产品畅销全球,某制造企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,椒江运往A、B、C】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A地B地C地合计
产品件数(件)x2x200
运费(元)30x
(1)①根据信息填表:

②由题意,得





200-3x≤2x①
30x+1600-24x+50x≤4000②

解不等式①得,x≥40,
解不等式②得,x≤42
6
7

所以,40≤x≤42
6
7

∵x为整数,
∴x=40或41或42,
∴有三种方案,分别是:方案一:A地40件,B地80件,C地80件;
方案二:A地41件,B地77件,C地82件;
方案三:A地42件,B地74件,C地84件;

(2)由题意,得30x+8(n-3x)+50x=5800,
整理,得n=725-7x,
∵n-3x≥0,
∴725-7x-3x≥0,
解得x≤72.5,
又∵x≥0,
∴0≤x≤72.5且x为整数,
∵n随x的增大而减少,
∴当x=72时,n有最小值为725-7×72=221.
如图,已知:点A(-2,0)、B(4,0)和直线l:y=2x,C是直线l上一点,且点C在第一象限,C,A两点到y轴的距离相等,D是OC的中点,连结BD并延长,交AC于点E.
(1)求点C的坐标;
(2)求
CE
AE
的值;
(3)求△CED的面积.
已知直线y=-


3
3
x+2
与y轴交于点A,与x轴交于点B;若点P是直线AB上的一动点,坐标平面中存在点Q,使以O、B、P、Q为顶点的四边形为菱形,则点Q的坐标是______.
如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度之差是(  )
A.4km/hB.5km/hC.6km/hD.8km/h

第三届南宁国际龙舟赛于2006年6月3日至4日在南湖举行,甲、乙两队在比赛时,路程y(米)与时间x(分钟)的函数图象如图所示,根据函数图象填空和解答问题:

(1)最先到达终点的是______队,比另一队领先______分钟到达;
(2)在比赛过程中,乙队在分钟和分钟时两次加速,图中点A的坐标是______,点B的坐标是______.
(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.
如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,


3
),点D是线段BC上的动点(与B、C不重合),过点D作直线l:y=-


3
x+b
交线段OA于点E.
(1)直接写出矩形OABC的面积(用含a的代数式表示);
(2)已知a=3,当直线l将矩形OABC分成周长相等的两部分时
①求b的值;
②梯形ABDE的内部有一点P,当⊙P与AB、AE、ED都相切时,求⊙P的半径.
(3)已知a=5,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,设CD=k,当k满足什么条件时,使矩形OABC和四边形O1A1B1C1的重叠部分的面积为定值,并求出该定值.