当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 如图,在平面直角坐标系中,当三角形直角顶点P坐标为(3,3)时,设一直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,在三角板绕点P旋转的过程中,使得△P...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,当三角形直角顶点P坐标为(3,3)时,设一直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,在三角板绕点P旋转的过程中,使得△POA为等腰三角形.请写出所有满足条件的点B的坐标______.
答案
∵P坐标为(3,3),
∴∠AOP=45°,
①如图1,若OA=PA,则∠AOP=∠OPA=45°,
∴∠OAP=90°,
即PA⊥x轴,
∵∠APB=90°,
∴PB⊥y轴,
∴点B的坐标为:(0,3);
②如图2,若OP=PA,则∠AOP=∠OAP=45°,
∴∠OPA=90°,
∵∠BPA=90°,
∴点B与点O重合,
∴点B的坐标为(0,0);
③如图3,若OA=OP,则∠OPA=∠OAP=
180°-∠AOP
2
=67.5°,
过点P作PC⊥y轴于点C,过点B作BD⊥OP于点D,
则PCOA,
∴∠OPC=∠AOP=45°,
∵∠APB=90°,
∴∠OPB=∠APB-∠OPA=22.5°,
∴∠OPB=∠CPB=22.5°,
∴BC=BD,
设OB=a,
则BD=BC=3-a,
∵∠BOP=45°,
在Rt△OBD中,BD=OB•sin45°,
即3-a=


2
2
a,
解得:a=6-3


2

综上可得:点B的坐标为:(0,3),(0,0),(0,6-3


2
).
故答案为:(0,3),(0,0),(0,6-3


2
).
核心考点
试题【如图,在平面直角坐标系中,当三角形直角顶点P坐标为(3,3)时,设一直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,在三角板绕点P旋转的过程中,使得△P】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
如图,在直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B两点,且△ABO的面积为12.
(1)求k的值;
(2)若P为直线AB上一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形,求点P的坐标;
(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗如果是,试说明理由,如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,直线y=-
4
3
x+12
与x轴交于点A,与y轴交于点B,动点P从点A出发沿折线AO-OB-BA运动,点P在AO、OB、BA上运动的速度分别为每秒3个单位长度、4个单位长度、5个单位长度,直线l从与x轴重合的位置出发,以每秒
4
3
个单位长度的速度沿y轴向上平移,移动过程中直线l分别与直线OB、AB交于点E、F,若点P与直线l同时出发,当点P沿折线AO-OB-BA运动一周回到点A时,直线l和点P同时停止运动,设运动时间为t秒,请解答下列问题:
(1)求A、B两点的坐标;
(2)当t为何值时,点P与点E重合?
(3)当t为何值时,点P与点F重合?
(4)当点P在AO-OB上,且点P、E、F不在同一直线上时,设△PEF的面积为S,请直接写出S关于t的函数解析式,并写出t的取值范围.
题型:不详难度:| 查看答案
如图,⊙C通过原点并与坐标轴分别交于A、D两点,B是⊙C上一点,若∠OBD=60°,D点坐标为(3,0),则直线AD的解析式为______.
题型:不详难度:| 查看答案
目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是______.
题型:不详难度:| 查看答案
如图,一次函数y=-
3
4
x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为______,点B的坐标为______;
(2)求OC的长度;
(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.