当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求tan∠OCD的...
题目
题型:不详难度:来源:
如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求该一次函数的解析式;
(2)求tan∠OCD的值;
(3)求证:∠AOB=135°.
答案
(1)由





-1=-2k+b
3=k+b
,解得





k=
4
3
b=
5
3

所以y=
4
3
x+
5
3
;(4分)

(2)C(-
5
4
,0),D(0,
5
3
).
在Rt△OCD中,OD=
5
3
,OC=
5
4

∴tan∠OCD=
OD
OC
=
4
3
;(8分)

(3)证明:取点A关于原点的对称点E(2,1),
则问题转化为求证∠BOE=45度.
由勾股定理可得,OE=


5
,BE=


(3-1)2+(2-1)2
=


5
,OB=


10

∵OB2=OE2+BE2
∴△EOB是等腰直角三角形.
∴∠BOE=45度.
∴∠AOB=135度.(12分)
核心考点
试题【如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求tan∠OCD的】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为______kg.
题型:不详难度:| 查看答案
如图,lA与lB分别是根据A步行与B骑自行车在同一路上行驶的路程S与时间t的关系式所作出的图象,
(1)B出发时与A相距______千米;骑了一段路后,自行车发生故障,进行修理,所用的时间是______小时;B从起点出发后______小时与A相遇;
(2)求出A行走的路程S与时间t的函数关系式(不写定义域);
(3)假设B的自行车没有发生故障,保持出发时的速度前进,______小时与A相遇,相遇点离B的出发点______千米.
题型:不详难度:| 查看答案
已知A、B两地相距300千米,甲、乙两车同时从A地出发,以各自的速度匀速往返两地.甲车先到达B地,停留1小时后按原路返回.设两车行驶的时间为x小时,离开A地的距离是y千米,如图是y与x的函数图象

(1)计算甲、乙两车的速度;
(2)几小时后两车相遇;
(3)在从开始出发到两车相遇的过程中,设两车之间的距离为s千米,乙车行驶的时间为t小时,求S与t之间的函数关系式.
题型:不详难度:| 查看答案
已知等腰三角形周长为12,其底边长为y,腰长为x.
(1)写出y关于x的函数解析式及自变量x的取值范围;
(2)在给出的平面直角坐标系中,画出(1)中函数的图象.
题型:不详难度:| 查看答案
如图,点P是x轴上的一点,以P为圆心的圆交x轴于点A(6,0),且与y轴相切于点O,点C(8,0)为x轴上的一点,过点C作⊙P的切线,切点为B.求过B、C两点的直线的解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.