已知y-4与x成正比例,且x=6时y=-4 (1)求y与x的函数关系式. (2)此直线在第一象限上有一个动点P(x,y),在x轴上有一点C(-2,0).这条直线与x轴相交于点A.求△PAC的面积S与x之间的函数关系式,并写出自变量x的取值范围. |
(1)∵y-4与x成正比例, ∴设y-4=kx(k≠0). 把x=6,y=-4代入,得 -4-4=6k, 解得,k=-,则y-4=-x, ∴y与x的函数关系式为:y=-x+4;
(2)由(1)知,y与x的函数关系式为:y=-x+4. 当y=0时,x=3,即A(3,0). ∵C(-2,0), ∴AC=5. ∴S=AC•|y|=×|-x+4|=-x+10(0<x<3).
|
核心考点
试题【已知y-4与x成正比例,且x=6时y=-4(1)求y与x的函数关系式.(2)此直线在第一象限上有一个动点P(x,y),在x轴上有一点C(-2,0).这条直线与x】;主要考察你对
待定系数法求一次函数解析式等知识点的理解。
[详细]
举一反三
如图1,直线y=-x+2与x轴、y轴分别相交于点C、D,一个含45°角的直角三角板的锐角顶点A在线段CD上滑动,滑动过程中三角板的斜边始终经过坐标原点,∠A的另一边与x轴的正半轴相交于点B. (1)试探索△AOB能否为等腰三角形?若能,请求出点B的坐标;若不能,请说明理由. (2)如图2,若将题中“直线y=-x+2”、“∠A的另一边与x轴的正半轴相交于点B”分别改为:“直线y=-x+t(t>0)”、“∠A的另一边与x轴的负半轴相交于点B”(如图2),其他条件保持不变,请探索(1)中的问题(只考虑点A在线段CD的延长线上且不包括点D时的情况)
|
如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线ln⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…ln分别交于点A1,A2,A3,…An;函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形An-1AnBnBn-1的面积记作Sn,那么S2012=______.
|
某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)之间是一次函数关系,其图象如图所示,求其解析式以及旅客最多可携带免费行李的最大重量.
|
某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如表:
类 别 | 电视机 | 洗衣机 | 进价(元/台) | 1800 | 1500 | 售价(元/台) | 2000 | 1600 | 教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示: (1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式; (2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟? (3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?
|
|