当前位置:初中试题 > 数学试题 > 一次函数定义 > 已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动。(1) 求梯形OD...
题目
题型:不详难度:来源:
已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动。
(1) 求梯形ODPC的面积S与时间t的函数关系式。
(2) t为何值时,四边形PODB是平行四边形?
(3) 在线段PB上是否存在一点Q,使得ODQP为菱形。若存在求t值,若不存在,说明理由。
(4) 当△OPD为等腰三角形时,求点P的坐标。
答案
(1)由题意仪,根据梯形的面积公式,得
s==2t+10
(2)∵四边形PODB是平行四边形,
∴PB=OD=5,
∴PC=5,
∴t=5
(3)∵ODQP为菱形,
∴OD=OP=PQ=5,
∴在Rt△OPC中,由勾股定理得:
PC=3
∴t=3
(4)当P1O=OD=5时,由勾股定理可以求得P1C=3,
P2O=P2D时,作P2E⊥OA,
∴OE=ED=2.5;
当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3,
∴P3C=2;
当P4D=OD=5时,作P4G⊥OA,由勾股定理,得DG=3,
∴OG=8.
∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4)

解析
(1)根据梯形的面积公式就可以表示出S与t的函数关系式.
(2)根据平行四边形的性质就可以知道PB=5,可以求出PC=5,从而可以求出t的值.
(3)要使ODQP为菱形,可以得出PO=5,由三角形的勾股定理就可以求出CP的值而求出t的值.
(4)当P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5时分别作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA于G,利用勾股定理P1C,OE,P3F,DG的值,就可以求出P的坐标.
核心考点
试题【已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动。(1) 求梯形OD】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
如图,直线分别与轴,轴交于两点,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是
A.B.C.D.

题型:不详难度:| 查看答案
某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:
(1)符合题意的搭配方案有几种?
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?
造型花卉


A
80
40
B
50
70

题型:不详难度:| 查看答案
已知A(1,5),B(3,-1)两点,在x轴上取一点M,使AM-BN取得最大值时,则M的坐标为    ▲   
题型:不详难度:| 查看答案
大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元
的小家电.通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)
与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.
(1)求y与x的函数关系式.
(2)设王强每月获得的利润为p(元),求p与x之间的函数关系式;如果王强想要每月获得2400元的
利润,那么销售单价应定为多少元?
题型:不详难度:| 查看答案
一次函数,若的增大而增大,则的值可以是(     )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.