当前位置:初中试题 > 数学试题 > 一次函数定义 > 某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。方案2:租凭...
题目
题型:不详难度:来源:
某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
方案2:租凭机器自己加工,所需费用y2(包括租凭机器的费用和生产包装盒的费用)
与包装盒数满足如图的函数关系。

根据图象回答下列问题:
(1)方案1中每个包装盒的价格是多少元?
(2)方案2中租凭机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1,y2,与x的函数表达式
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由。
答案
(1)5;(2)20000,2.5;(3)y1=5x,y2=2.5x+20000;(4)当x=8000时,两种方案同样省钱;当x<8000时,选择方案一;当x>8000时,选择方案二.
解析

试题分析:(1)根据图象1可知100个盒子共花费500元,据此可以求出盒子的单价;
(2)根据图2可以知道租赁机器花费20000元,根据图象所经过的点的坐标求出盒子的单价即可;
(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;
(4)求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.
试题解析:(1)500÷100=5,
∴方案一的盒子单价为5元;
(2)根据函数的图象可以知道租赁机器的费用为20000元,
盒子的单价为(30000-20000)÷4000=2.5,
故盒子的单价为2.5元;
(3)设图象一的函数解析式为:y1=k1x,
由图象知函数经过点(100,500),
∴500=100k1
解得k1=5,
∴函数的解析式为y1=5x;
设图象二的函数关系式为y2=k2x+b
由图象知道函数的图象经过点(0,20000)和(4000,30000)

解得:

∴函数的解析式为y2=2.5x+20000;
(4)令5x=2.5x+20000,
解得x=8000,
∴当x=8000时,两种方案同样省钱;
当x<8000时,选择方案一;
当x>8000时,选择方案二.
核心考点
试题【某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。方案2:租凭】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
如图,双曲线与直线相交于点A(4,m)、B.

(1)求m的值及直线的函数表达式;
(2)求△AOB的面积;
(3)当x为何值时,?(直接写出答案)
题型:不详难度:| 查看答案
如图,函数的图象与函数)的图象交于点A(2,1)、B,与y轴交于点C(0,3).

(1)求函数的表达式和点B的坐标;
(2)观察图象,比较当x>0时的大小.
题型:不详难度:| 查看答案
如图,的图象与反比例函数的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的表达式;
(2)请直接写出当x取何值时,y1>y2
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,点B的横、纵坐标分别是一元二次方程x2+5x﹣24=0的两个实数根,点D是AB的中点.

(1)求点B坐标;
(2)求直线OD的函数表达式;
(3)点P是直线OD上的一个动点,当以P、A、D三点为顶点的三角形是等腰三角形时,请直接写出P点的坐标.
题型:不详难度:| 查看答案
给出下列命题及函数的图象
①如果,那么
②如果,那么
③如果,那么
④如果时,那么.
则(     )
A.正确的命题是①④B.错误的命题是②③④
C.正确的命题是①②D.错误的命题只有③

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.