当前位置:初中试题 > 数学试题 > 一次函数定义 > 如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为     ...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为               .

答案
4.
解析

试题分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.
试题解析:如图,连接AA′、BB′.

∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是3.
又∵点A的对应点在直线y=x上一点,
∴3=x,解得x=4.
∴点A′的坐标是(4,3),
∴AA′=4.
∴根据平移的性质知BB′=AA′=4.
核心考点
试题【如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为     】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
请写出一个y随x增大而增大的正比例函数表达式,y=______________.
题型:不详难度:| 查看答案
如图,一次函数的图象与反比例函数的图象交于点,与轴交于点.
(1)求一次函数的解析式和点的坐标;
(2)点C在x轴上,连接AC交反比例函数的图象于点P,且点P恰为线段AC的中点.请直接写出点P和点C的坐标.

题型:不详难度:| 查看答案
若一次函数的图像过点(0,2),且函数y随自变量x的增大而增大,请写出一个符合要求的一次函数表达式:_________
题型:不详难度:| 查看答案
经过点(1,1)的直线l:与反比例函数G1:的图象交于点,B(b,-1),与y轴交于点D.
(1)求直线l对应的函数表达式及反比例函数G1的表达式;
(2)反比例函数G2::
①若点E在第一象限内,且在反比例函数G2的图象上,若EA=EB,且△AEB的面积为8,求点E的坐标及t值;
②反比例函数G2的图象与直线l有两个公共点M,N(点M在点N的左侧),若,直接写出t的取值范围.

题型:不详难度:| 查看答案
如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线经过等腰Rt△AOB的直角顶点A,交y轴于C点.
(1) 求点A坐标; 
(2)若点P为x轴上一动点.点Q的坐标是(),△PAQ是以点A为直角顶点的等腰三角形.求出的值并写出点Q的坐标.
(3)在(2)的条件下,若D是坐标平面内任意一点,使点A、P、Q、D刚好能构成平行四边形,请直接写出符合条件的点D的坐标

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.