当前位置:初中试题 > 数学试题 > 一次函数定义 > 如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x...
题目
题型:不详难度:来源:
如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,连接A1B2、B1A2、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、…、Sn,则Sn为(  )
A.B.C.D.

答案
D.
解析

试题分析:∵A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,
∴A1(1,0),
A2(2,0),
A3(3,0),

An(n,0),
An+1(n+1,0),
∵分别过点A1、A2、A3、…、An、An+1,作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1
∴B1的横坐标为:1,纵坐标为:2,
则B1(1,2),
同理可得:B2的横坐标为:2,纵坐标为:4,
则B2(2,4),
B3(2,6),

Bn(n,2n),
Bn+1(n+1,2n+2),
根据题意知:P n是AnBn+1与 BnAn+1的交点,
设:直线AnBn+1的解析式为:y=k1x+b1
直线BnAn+1的解析式为:y=k2x+b2
∵An(n,0),An+1(n+1,0),Bn(n,2n),Bn+1(n+1,2n+2),
∴直线AnBn+1的解析式为:y=(2n+2)x﹣2n2﹣2n,
直线BnAn+1的解析式为:y=﹣2n x+2n2+2n,
∴P n
∴△AnBnPn的AnBn边上的高为:=,
△AnBnPn的面积Sn为:
故选D.
核心考点
试题【如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)           
题型:不详难度:| 查看答案
如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.
(1)填空:点C的坐标是(    ),点D的坐标是(    );
(2)设直线CD与AB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.
 
题型:不详难度:| 查看答案
如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).
(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;
(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.
 
题型:不详难度:| 查看答案
在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:
(1)求出蜡烛燃烧时y与x之间的函数关系式;
(2)求蜡烛从点燃到燃尽所用的时间.

题型:不详难度:| 查看答案
一次函数中,y的值随着x值的增大而减小的是(  )
A.y=


3
x-4
B.y=-2+0.1xC.y=8x-3D.y=(


2
-


3
)x
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.