足球比赛记分规则如下:胜1场得3分,平1场得1分,负1场得0分.某球队已参加了12场比赛,得21分,请你判断该队胜、平、负各几场。 |
解:设该队胜x场,平y场,则由已知得,
由①知y=21-3x代入②,得x+21-3x≤12, ∴x≥, 又y≥0,由①知3x≤21, ∴x≤7,即≤x≤7, 又x为整数, ∴x=5,6,7, 故, 答:该队胜5场,平6场,负1场;或胜6场,平3场,负3场;或胜7场,平0场,负5场。 |
核心考点
试题【足球比赛记分规则如下:胜1场得3分,平1场得1分,负1场得0分.某球队已参加了12场比赛,得21分,请你判断该队胜、平、负各几场。】;主要考察你对
一元一次不等式组应用等知识点的理解。
[详细]
举一反三
从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为米/分,则可列不等式组为( ),小明步行的速度范围是( )。 |
今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨。 |
|
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案? (2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少? |
某车间有3个小组计划在10天内生产500件产品(每天每个小组生产量相同),按原先的生产速度,不能完成任务,如果每个小组每天比原先多生产1件产品,就能提前完成任务,每个小组原先每天生产多少件产品?(结果取整数) |
某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶,设生产A种饮料x瓶,解析下列问题: |
|
|
(1)有几种符合题意的生产方案?写出解答过程; (2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低? |
某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半,电视机与洗衣机的进价和售价如下表: |
类别 | 电视机 | 洗衣机 | 进价(元/台) | 1800 | 1500 | 售价(元/台) | 2000 | 1600 |
|