当前位置:初中试题 > 数学试题 > 整式的概念 > 因式分解:x2y2﹣x2(y﹣1)2....
题目
题型:解答题难度:简单来源:不详
因式分解:x2y2﹣x2(y﹣1)2
答案
x2(2y﹣1)
解析

试题分析:先提公因式x2,再利用平方差公式进行二次分解即可.
解:原式=x2[y2﹣(y﹣1)2]
=x2[y+(y﹣1)][y﹣(y﹣1)]
=x2(y+y﹣1)(y﹣y+1)
=x2(2y﹣1).
点评:此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止
核心考点
试题【因式分解:x2y2﹣x2(y﹣1)2.】;主要考察你对整式的概念等知识点的理解。[详细]
举一反三
因式分解:4(a+b)-(a+b)2-4.
题型:解答题难度:简单| 查看答案
把下列各式分解因式:
(1)a2﹣14ab+49b2
(2)a(x+y)﹣(a﹣b)(x+y);
(3)121x2﹣144y2
(4)3x4﹣12x2
题型:解答题难度:简单| 查看答案
请看下面的问题:把x4+4分解因式
分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢
19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x22+(222的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)
人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.
(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.
题型:解答题难度:一般| 查看答案
把下列各式分解因式
(1)(x2+y22﹣4x2y2;(2)3x3﹣12x2y+12xy2
题型:解答题难度:简单| 查看答案
阅读下列材料,并解答相应问题:
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有:
x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣(2a)2
=(x+2a+a)(x+a﹣2a)
=(x+3a)(x﹣a).
(1)像上面这样把二次三项式分解因式的数学方法是.     
(2)这种方法的关键是.     
(3)用上述方法把m2﹣6m+8分解因式.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.