当前位置:初中试题 > 数学试题 > 整式的概念 > 如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=...
题目
题型:解答题难度:一般来源:不详
如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.

(1)求∠EDC的度数;
(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).
答案
(1)35°;(2)n°+35°;(3)215°-n°.
解析

试题分析:(1)根据角平分线的性质结合∠ADC=70°即可求得结果;
(2)过点E作EF∥AB,即可得到AB∥CD∥EF,从而可得∠ABE=∠BEF,∠CDE=∠DEF,再根据角平分线的性质可得∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,即可求得结果;
(3)过点E作EF∥AB,根据角平分线的性质可得∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,再根据平行线的性质可得∠BEF的度数,从而求得结果.
(1)∵DE平分∠ADC,∠ADC=70°,
∴∠EDC=∠ADC=×70°=35°;
(2)过点E作EF∥AB,

∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,
∴∠BED=∠BEF+∠DEF=n°+35°;
(3)过点E作EF∥AB

∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,
∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.
点评:本题知识点较多,综合性强,难度较大,是中考常见题,正确作出辅助线是解题关键.
核心考点
试题【如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=】;主要考察你对整式的概念等知识点的理解。[详细]
举一反三
单项式的系数是(    )
A.0B.1C.-1D.没有系数

题型:单选题难度:简单| 查看答案
观察下列数据:, , , , , 它们是按一定规律排列的,依照此规律,第n个数据是________。
题型:填空题难度:简单| 查看答案
是同类项,则的值是__________。
题型:填空题难度:简单| 查看答案
个位数字是,十位数字是5的两位数是           
题型:填空题难度:简单| 查看答案
,则的值是            
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.