当前位置:考点百科 > 特征值与特征向量
百科

特征值与特征向量

特征值定义

  基本定义

  设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。

  广义特征值

  如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。若B可逆,则原关系式可以写作Aν=λν ,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为A矩阵未必是对称的。

特征向量

  简介

  计算矩阵的特征值和特征向量假设我们想要计算给定矩阵的特征值。若矩阵很小,我们可以用特征多项式进行符号演算。但是,对于大型矩阵这通常是不可行的,在这种情况我们必须采用数值方法。

  符号演算

  关于此话题更进一步的细节,见矩阵特征值的符号演算。

  求特征值

  描述正方形矩阵的特征值的重要工具是特征多项式,λ是A的特征值等价于线性方程组(A – λI) v = 0 (其中I是单位矩阵)有非零解v (一个特征向量),因此等价于行列式|A – λI|=0.函数p(λ) = det(A – λI)是λ的多项式,因为行列式定义为一些乘积的和,这就是A的特征多项式。矩阵的特征值也就是其特征多项式的零点。一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。 反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。

  求特征向量

  一旦找到特征值λ,相应的特征向量可以通过求解方程(A – λI) v = 0 得到。没有实特征值的一个矩阵的例子是顺时针旋转90度。

  数值计算

  关于此话题更进一步的细节,见特征值算法。在实践中,大型矩阵的特征值无法通过特征多项式计算,计算该多项式本身相当费资源,而精确的“符号式”的根对于高次的多项式来说很难计算和表达:阿贝尔-鲁费尼定理显示高次(5次或更高)多项式的根无法用n次方根来简单表达。对于估算多项式的根的有效算法是有的,但特征值的小误差可以导致特征向量的巨大误差。求特征多项式的零点,即特征值的一般算法,是迭代法。最简单的方法是幂法:取一个随机向量v,然后计算一系列单位向量。这个序列几乎总是收敛于绝对值最大的特征值所对应的特征向量。这个算法很简单,但是本身不是很有用。但是,象QR算法这样的算法正是以此为基础的。

相关试题
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.