当前位置: > 设数项级数a0+a1+a2+...条件收敛,试证明幂级数a0+a1x+a2x^2+a3x^3+...的收敛半径r=1....
题目
设数项级数a0+a1+a2+...条件收敛,试证明幂级数a0+a1x+a2x^2+a3x^3+...的收敛半径r=1.
高等教育出版社出版的《高等数学 上册》(殷锡铭主编,2009年8月第一版)习题8.2(B)第5题

提问时间:2022-02-07

答案
首先x=1时幂级数收敛 故收敛半径至少是1(阿贝尔定理,幂级数应该讲的)
其次若收敛半径大于1 则必存在某点x=x0>1处收敛且绝对收敛(也是上述定理)不妨设绝对收敛于A
这样有A>a0的绝对值加a1的绝对值+...(一直加下去)
而数项级数a0+a1+a2+...条件收敛 这就是说 a0的绝对值加a1的绝对值+...(一直加下去)趋于正无穷
矛盾!
因此收敛半径是1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.