当前位置: > f(x)=sin(2x+φ) φ是 实数f(x)≤f(π/6)的绝对值x属于R恒成立且f(π/2)>f(π)则f(x)单调递增区间...
题目
f(x)=sin(2x+φ) φ是 实数f(x)≤f(π/6)的绝对值x属于R恒成立且f(π/2)>f(π)则f(x)单调递增区间

提问时间:2021-12-26

答案
f(x)≤|f(π/6)|,
∴sin(π/3+φ)=土1,
π/3+φ=(k+1/2)π,k∈Z.
φ=(k+1/6)π,
由f(π/2)>f(π)得
sin[(k+7/6)π]-sin[(k+13/6)π]>0,
-2sin(π/2)cos[(k+5/3)π>0,取k=-1,
f(x)=sin(2x-5π/6),单调递增区间由
(2k-1/2)π
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.