题目
在长方体ABCD-A1B1C1D1中,A1B1=B1C1=3,BB1=4,点B1在平面A1BC1上的射影为H,求证H为△A1BC1的垂心.
提问时间:2021-12-26
答案
连结AH,延长交C1B于E,连结B1E,连结CH,延长交AB于F,连结B1F,
∵C1B1⊥平面A1BB1,
A1B∈平面A1BB1,
∴B1C1⊥A1B,
∵B1H⊥平面A1BC1,
A1B∈平面A1BC1,
∴A1B⊥B1H,
∵B1C1∩B1H=B1,
∴A1B⊥平面B1C1F,
∵C1F∈平面B1C1F,
∴A1B⊥C1F,
∴C1F是△A1C1B中A1B边上的高,
同理BC1⊥平面AB1E,A1E∈平面A1B1E,
A1E∈平面A1B1E,
∴BC1⊥A1E,
∴A1E是△A1BC1中BC1边上的高,
∴H是△A1BC1两条高的交点,
∴H是△A1BC1的垂心.
三棱锥只要侧棱两两垂直,则顶点在底面的射影就是底三角形的垂心.
∵C1B1⊥平面A1BB1,
A1B∈平面A1BB1,
∴B1C1⊥A1B,
∵B1H⊥平面A1BC1,
A1B∈平面A1BC1,
∴A1B⊥B1H,
∵B1C1∩B1H=B1,
∴A1B⊥平面B1C1F,
∵C1F∈平面B1C1F,
∴A1B⊥C1F,
∴C1F是△A1C1B中A1B边上的高,
同理BC1⊥平面AB1E,A1E∈平面A1B1E,
A1E∈平面A1B1E,
∴BC1⊥A1E,
∴A1E是△A1BC1中BC1边上的高,
∴H是△A1BC1两条高的交点,
∴H是△A1BC1的垂心.
三棱锥只要侧棱两两垂直,则顶点在底面的射影就是底三角形的垂心.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1计算 a(a+b)-b(a-b) 分解因式 a的3次方-4ab的2次方 36x的2次方+12xy+y的2次方 (x+2)(x-6)+16
- 2溶液中含有Cl- 、SO4-、 NO3-、 OH-中的一种或两种阴离子,怎么检验溶液中含的是那个?
- 3are these red eraser yours? 【同义句转换】
- 4书架上书的本数在110~150本之间,其中1/5是科技书,1/7是故事书,书架上有多少本书?
- 5在朝花夕拾中不曾提到“长妈妈”的文章是( ).
- 62.(2012·安徽卷)读下表,假定其他条件不变,2011年某企业生产M商品的劳动生产率提高的比例和价值总量分别是( )
- 7一边看一边思索用一个词来表示什么
- 8蛋糕模8寸的和6寸的外围最大直径分别都是多少?cm计量
- 9负2减负3加负1乘2加负3等于多少
- 10春天的景物有哪些