当前位置: > 已知向量a=(cosax,根号3cosax),b=(sinax,cosax),(其中0<a≦1),记f(x)=a*b-根号3/2,且满足f(x+π)=f(x)....
题目
已知向量a=(cosax,根号3cosax),b=(sinax,cosax),(其中0<a≦1),记f(x)=a*b-根号3/2,且满足f(x+π)=f(x).
(1) 求函数y=f(x)的解析式;
(2) 求函数y=f(x)在π/4处的切线方程;
(3) 如果过于x的方程3【f(x)】2+mf(x)-1=0在【-π/12,5π/12】上有三个不相等的实根,求实数m的取值范围.

提问时间:2021-12-26

答案
(1)因f(x)=cosaxsinax+√3(cosax)^2-√3/2
=1/2(2cosaxsinax)+√3/2[2(cosax)^2-1]
=1/2sin2ax+√3/2cos2ax
=cosπ/3sin2ax+sinπ/3cos2ax
=sin(2ax+π/3)
又f(x+π)=f(x),则最小正周期T0=π,即有2a=2π/π,即a=1
所以f(x)=sin(2x+π/3)
(2)因f'(x)=2cos(2x+π/3),则f'(π/4)=2cos(2π/4+π/3)=-√3
而f(π/4)=sin(2π/4+π/3)=1/2
于是过点(π/4,1/2)且斜率为-√3的切线方程为:y-1/2=-√3(x-π/4)
(3)当-π/12≤x≤5π/12,则有π/6≤2x+π/3≤7π/6
于是-1/2≤sin(2x+π/3)≤1
即-1/2≤f(x)≤1
因关于x的方程有三个不相等的实根,则关于f(x)的方程必有两个异根(令两根f(x)1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.