当前位置: > 已知f(x)是n次多项式,如果它有n+1个根,那么f(x)=0是恒等式,求证明...
题目
已知f(x)是n次多项式,如果它有n+1个根,那么f(x)=0是恒等式,求证明
能否这样证明:如果它不是恒等式,那么n+1个根是不可能的.

提问时间:2021-12-26

答案
你这样证的前提是f(x)是n次多项式,它必有n个根
这个一定要交代!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.