当前位置: > 一道关于幂级数展开的问题...
题目
一道关于幂级数展开的问题
f(x)=(1/4)*ln[(1+x)/(1-x)]+(1/2)*arctanx-x
展开成x的幂级数

提问时间:2021-12-24

答案
f(x)=(1/4)*ln[(1+x)-ln(1-x)]+(1/2)*arctanx-x
已知当|x|x] 1/(1+x^2) dx
当|x|x] 1-x^2+x^4-x^6+…… dx= x-x^3/3+x^5/5-x^7/7……
=∑(-1)^n*x^(2n+1)/(2n+1) n from 0 to ∞
所以f(x)=(1/4)*ln[(1+x)/(1-x)]+(1/2)*arctanx-x
=(1/2)∑x^(2n+1) / (2n+1) + (1/2)∑(-1)^n*x^(2n+1)/(2n+1) - x
=[x+x^5/5+x^9/9+x^13/13+……]-x=∑x^(4n+1)/(4n+1) n from 1 to ∞ |x|
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.