题目
x趋向于无穷大时lim(1+k/x)^x 如何用洛必达法则求解
提问时间:2021-12-21
答案
x趋向于无穷大时lim(1+k/x)^x
=e^lim(x->∞)ln(1+k/x)/(1/x)
令1/x=t,则t->0
原式=e^lim(t->0)ln(1+kt)/t
=e^lim(t->0)k/(1+kt)/1
=e^k
=e^lim(x->∞)ln(1+k/x)/(1/x)
令1/x=t,则t->0
原式=e^lim(t->0)ln(1+kt)/t
=e^lim(t->0)k/(1+kt)/1
=e^k
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点