当前位置: > 证明:1+2x^4>=2x^3+x^2...
题目
证明:1+2x^4>=2x^3+x^2

提问时间:2021-12-20

答案
2x^4-2x^3-x^2+1=2x^3(x-1)-(x^2-1)=2x^3(x-1)-(x+1)(x-1)=(x-1)[2x^3-(x+1)]=(x-1)(x-1)(2x^2+2x+1)=(x-1)^2(2x^2+2x+1)=(x-1)^2[x^2+(x+1)^2]≥0,所以1+2x^4≥2x^3+x^2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.