当前位置: > 如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D. (1)若PC=PD,求PB的长. (2)试问线段AB...
题目
如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

提问时间:2021-12-20

答案
(1)∵PC切⊙A点于C,∴PC⊥AC,PC2=PA2-AC2,同理PD2=PB2-BD2,∵PC=PD,∴PA2-AC2=PB2-BD2设PB=x,PA=4-x代入得x2-12=(4-x)2-22,解得x=138,1<138<2,即PB的长为138(PA长为198>2),(2)假定存在一点P使P...
(1)由于PC,PD都是切线,那么三角形ACP和PDB就都是直角三角形,那么我们可以用勾股定理来表示出PC2和PD2,由于PC=PD,那么可得出关于CA2、AP2、PB2、BD2的比例关系式,已知了AC,BD,AB的值如果我们用PB表示出AP,就能在这个比例关系式中求出PB的值;
(2)方法同(1)类似只不过相等改成了PC2+PD2=4,可用(1)的方法先求出PB的长,然后根据PB的取值范围来判断有几个符合条件的值;
(3)要两个三角形相似,已知的条件有∠ACP=∠BDP=90°,AC:BD=2:1,那么只要让PC:PD=2:1,就能构成三角形相似判定中两组对应边对应成比例且夹角相等的条件,两三角形相似后∠CPA=∠CPB,如果延长CP那么CP延长线与PD组成的角中,PB正好是角平分线,根据角平分线的点到角两边的距离相等,可得出B到CP延长线的距离等于半径BD的长,因此CP与⊙B也相切.

切线的性质;由实际问题抽象出一元二次方程;勾股定理;相似三角形的判定.

本题主要考查了切线性质的判定以及相似三角形的判定,具有一定的综合性,难度较大.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.