题目
设f(x)是定义在R上的函数,且对于任意x,y属于R,恒有f(x+y)=f(x)f (y),且当x大于0时,f(x)>1.证
1. 当f(0)=1时,且x<0时,0<f(x)<1
2. f(x)是R上的单调增函数.
1. 当f(0)=1时,且x<0时,0<f(x)<1
2. f(x)是R上的单调增函数.
提问时间:2021-12-20
答案
1.注意1=f(0)=f(x)f(-x)
当x0,f(-x)>1,所以f(x)=1/f(-x)x,则y-x>0,f(y-x)>1,所以f(y)=f(y-x)f(x)>f(x)
当x0,f(-x)>1,所以f(x)=1/f(-x)x,则y-x>0,f(y-x)>1,所以f(y)=f(y-x)f(x)>f(x)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点