题目
当x>0时,函数f(x)=(a2-1)x的值总大于1,则实数a的取值范围是______.
提问时间:2021-12-17
答案
∵当x>0时,函数y=(a2-1)x的值总大于1,
根据指数函数的性质得:
a2-1>1,
∴a2>2,|a|>
.
则实数a的取值范围是a<-
或a>
.
故答案为:a<-
或a>
.
根据指数函数的性质得:
a2-1>1,
∴a2>2,|a|>
2 |
则实数a的取值范围是a<-
2 |
2 |
故答案为:a<-
2 |
2 |
根据题意指数函数y=ax的图象与性质得出关于底数的不等关系,再解此不等式即可求得实数a的取值范围.
指数函数的图像与性质.
本题主要考查指数函数的图象与性质、不等式的解法.属于容易题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点