当前位置: > 曲线y=1+根号(4-x^2)(-2≤x≤2)与直线y=k(x-2)+4有两个交点时,实数k的取值范围是?为什么在(-2,0)是才开始有两个交点...
题目
曲线y=1+根号(4-x^2)(-2≤x≤2)与直线y=k(x-2)+4有两个交点时,实数k的取值范围是?为什么在(-2,0)是才开始有两个交点

提问时间:2021-12-17

答案
由题意,作草图.第一个曲线是圆x^2+(y-1)^2=4的y≥1的部分(上半圆部分).直线y=k(x-2)+4过定点(2,4) 要使两函数有两交点,k一定>0,其范围在以点(2,4)向圆作切线的斜率变化范围之间.求出这条切线的斜率:圆心的切线的距离...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.