当前位置: > 已知f(x)=a-2/(2^x+1)是R上的奇函数(1)求a的值,(2)证明,函数f(x)在R上是增函数...
题目
已知f(x)=a-2/(2^x+1)是R上的奇函数(1)求a的值,(2)证明,函数f(x)在R上是增函数

提问时间:2021-12-13

答案
f(x)=a-2/(2^x+1)f(-x)=a-2/(2^-x+1)=a-2^(x+1)/(2^x+1)∵f(x)是R上的奇函数∴f(x)=-f(-x)即:a-2/2^x+1=-a+2^(x+1)/(2^x+1)2a=2^(x+1)/(2^x+1)+2/(2^x+1)=2(2^x+1)/(2^x+1)=2a=1∴f(x)=1-2/(2^x+1)令x1>x2f(x1)-f(...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.