当前位置: > 如图,已知△ABC中,点D、F、E分别是AB、BC、AC的中点. (1)试说明:AF与DE互相平分; (2)当△ABC的边或角满足什么条件时,AF与DE相等?说明理由; (3)当△ABC的边或角满足什...
题目
如图,已知△ABC中,点D、F、E分别是AB、BC、AC的中点.

(1)试说明:AF与DE互相平分;
(2)当△ABC的边或角满足什么条件时,AF与DE相等?说明理由;
(3)当△ABC的边或角满足什么条件时,AF与DE垂直?说明理由.

提问时间:2021-12-13

答案
(1)连接DF、EF.
∵点D、F、E分别是AB、BC、AC的中点,
∴DF∥AC,EF∥AB.
∴ADFE是平行四边形.
∴AF与DE互相平分;
(2)∵DE=
1
2
BC,
∴若AF=DE,则AF=
1
2
BC,
又AF是中线,
所以可得∠BAC=90°.
即当∠BAC=90°时,AF与DE相等;
(3)∵AF与DE互相平分,
∴若AF与DE垂直,则AD=AE.
又D、E分别是AB、AC的中点,
∴AB=AC.
即当AB=AC时,AF与DE垂直.
(1)连接DF、EF.根据中位线定理证明ADFE是平行四边形;
(2)用分析法找条件.因为DE=
1
2
BC,若AF=DE,则AF=
1
2
BC,又AF是中线,所以可得∠BAC=90°;
(3)因为ADFE是平行四边形,若AF与DE垂直,则ADFE是菱形,有AD=AE.又D、E分别是AB、AC的中点,得AB=AC.

三角形中位线定理.

本题考查的知识比较全面,需要用到三角形中位线定理和平行四边形的性质,以及直角三角形的一种判定方法:若三角形一边上的中线等于这边的一半,则这个三角形是直角三角形.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.