题目
已知集合M={x|f(x)-x=0,x∈R}与集合N={x|f[f(x)]-x=0,x∈R},其中f(x)是一个二次项系数为1的二次函数
(1)判断M与N的关系
(2)若M是单元素集合,求证M=N
(3)若M={2,5},求集合N
(1)判断M与N的关系
(2)若M是单元素集合,求证M=N
(3)若M={2,5},求集合N
提问时间:2021-12-13
答案
不妨设 f(x) = x^2+bx+c;
在 M 中,f(x) = x^2+bx+c = x ……(1);
再看 N:f[f(x)] = (x^2+bx+c)^2 + b*(x^2+bx+c) + c …… (2)
假设 x ∈ M ,则 (2)式可化为:f[f(x)] = x^2+bx+c = x
即 x ∈ N ,所以 M ⊆ N.
但是反过来是不成立的,这很显然,因为 N 相当于是解一个 一元四次方程,可能有四个不同的解,而 M 再多只有两个解.
(2) 用反证法:
假设有 N 还存在至少另外一个元素满足条件,
不妨设 N = { x1,x2 },M={ x1 }.
( 注:下面的符号 != 表示 “不等于”)
对于 f[f(x)] - x = (x^2+bx+c)^2 + b*(x^2+bx+c) + c - x = 0,
因为 f(x2) = t != x2 ,即 f[f(x2)] - x2 = t^2 + b*t + c - x2 = 0 成立.
对于 f(t) = t^2 + b*t + c,由 M 是单元素集合可知,t = x2 必然成立,这与假设矛盾,故有 M=N.
在 M 中,f(x) = x^2+bx+c = x ……(1);
再看 N:f[f(x)] = (x^2+bx+c)^2 + b*(x^2+bx+c) + c …… (2)
假设 x ∈ M ,则 (2)式可化为:f[f(x)] = x^2+bx+c = x
即 x ∈ N ,所以 M ⊆ N.
但是反过来是不成立的,这很显然,因为 N 相当于是解一个 一元四次方程,可能有四个不同的解,而 M 再多只有两个解.
(2) 用反证法:
假设有 N 还存在至少另外一个元素满足条件,
不妨设 N = { x1,x2 },M={ x1 }.
( 注:下面的符号 != 表示 “不等于”)
对于 f[f(x)] - x = (x^2+bx+c)^2 + b*(x^2+bx+c) + c - x = 0,
因为 f(x2) = t != x2 ,即 f[f(x2)] - x2 = t^2 + b*t + c - x2 = 0 成立.
对于 f(t) = t^2 + b*t + c,由 M 是单元素集合可知,t = x2 必然成立,这与假设矛盾,故有 M=N.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1观察下面一列单项式:x,-1/2x2,1/4x3,-1/8x4,1/16x5,… (1)计算这列单项式中,一个单项式与它前一项的商,你有什么发现? (2)根据你发现的规律写出第n个单项式.
- 21.The reporter wants to interview Wang Liqin _____ his past and future.
- 3若x,y均为实数,且满足等式根号下3x加5y减2加根号下2x加4y减a等于根号下x-2013+y乘以根号下2013-x-y求a
- 4《自给自足的人体生物能发电》 分段,在线等.大谢.
- 5阿基米德原理的公式是什么?
- 6离子交换水与去离子水是一样的吗?
- 7和田地处的处的读音是什么
- 8一辆汽车行,二十分之九千米,用汽油25分之九,用五分之三升汽油.可以行多少米?
- 9爱迪生故事的读后感400字左右
- 101mol乙烷在光照条件下,最多可以与多少摩尔cl2发生取代反应?